SKILLEDTRADES^{BC}

PROGRAM OUTLINE

Machinist

The latest version of this document is available in PDF format on the SkilledTradesBC website www.skilledtradesbc.ca

To order printed copies of Program Outlines or learning resources (where available) for BC trades contact:

Crown Publications, Queen's Printer Web: www.crownpub.bc.ca Email: crownpub@gov.bc.ca Toll Free 1 800 663-6105

Copyright © 2018 SkilledTradesBC

This publication may not be modified in any way without permission of SkilledTradesBC

MACHINIST HARMONIZED PROGRAM OUTLINE

APPROVED BY INDUSTRY FEBRUARY 2019

> BASED ON RSOS 2017

Developed by SkilledTradesBC Province of British Columbia

TABLE OF CONTENTS

Section 1	INTRODUCTION
	Foreword
	Acknowledgements
	How to Use this Document
Section 2	PROGRAM CONTENT9
	Program Credentialing Model10
	Occupational Analysis Chart
	Training Topics and Suggested Time Allocation14
	Training Topics and Suggested Time Allocation16
	Training Topics and Suggested Time Allocation17
	Training Topics and Suggested Time Allocation
Section 3	PROGRAM CONTENT 19
	Level 1 Machinist
	Level 2 Machinist
	Level 3 Machinist113
	Level 4 Machinist137
Section 4	ASSESSMENT GUIDELINES
	Assessment Guidelines – Level 1
	Assessment Guidelines – Level 2
	Assessment Guidelines - Level 3
	Assessment Guidelines - Level 4
Section 5	FRAINING PROVIDER STANDARDS 150
	Facility Requirements
	Tools and Equipment
	Reference Materials
	Instructor Requirements
Appendic	es
-	Appendix A Acronyms158
	Appendix A Actoryms
	Appendix D 1 revious contributors

Section 1 INTRODUCTION

Machinist

Foreword

The Program Standards for Machinist were updated through a Standards Review project funded by SkilledTradesBC. These revised standards incorporate changes made to the 2017 Red Seal Occupational Standard (RSOS).

This Program Outline is for use in Machinist industry apprenticeship training classes sponsored by SkilledTradesBC and will be used as a curriculum planning guide for instructors in the formal classroom portions of apprenticeship training. Safe working practices, though not always specified in each of the competencies and learning tasks, are an implied part of the program and should be stressed throughout the apprenticeship.

This Program Outline was reviewed and adjusted by a group of Subject Matter Experts (SMEs), during a five day workshop in March 2018. Thanks are extended to the SMEs for their dedication and participation in keeping the Machinist Program Standards technologically current and aligned with the needs of industry.

SAFETY ADVISORY

Be advised that references to the WorkSafeBC safety regulations contained within these materials do not/may not reflect the most recent Occupational Health and Safety Regulation (the current Standards and Regulation in BC can be obtained on the following website: <u>http://www.worksafebc.com</u>)

Please note that it is always the responsibility of any person using these materials to inform him/herself about the Occupational Health and Safety Regulation pertaining to his/her work.

Acknowledgements

Subject Matter Experts (SMEs) retained to assist in the development of the Program Outline:

Marte Arreola BCIT • Thomas Green BCIT • Mike Hall Mearl's Machine Works Ltd. . BCIT Karl Reichenback • **Daniel Smith** West Fraser Plywood ٠ **Richard Turnbull** Department of National Defense ٠ **Rob Vanderstarren** Customized CNC Solutions Inc. **Reinhard Wildauer** College of New Caledonia

SkilledTradesBC would like to acknowledge the dedication and hard work of all the industry representatives appointed to identify the training requirements of the Machinist occupation.

How to Use this Document

This Program Outline has been developed for the use of individuals from several different audiences. The table below describes how each section can be used by each intended audience.

Section	Training Providers	Employers/ Sponsors	Apprentices	Challengers
Program Credentialing Model	Communicate program length and structure, and all pathways to completion	Understand the length and structure of the program	Understand the length and structure of the program, and pathway to completion	Understand challenger pathway to Certificate of Qualification
OAC	Communicate the competencies that industry has defined as representing the scope of the occupation	Understand the competencies that an apprentice is expected to demonstrate in order to achieve certification	View the competencies they will achieve as a result of program completion	Understand the competencies they must demonstrate in order to challenge the program
Training Topics and Suggested Time Allocation	Shows proportionate representation of general areas of competency (GACs) at each program level, the suggested proportion of time spent on each GAC, and percentage of time spent on theory versus practical application	Understand the scope of competencies covered in the technical training, the suggested proportion of time spent on each GAC, and the percentage of that time spent on theory versus practical application	Understand the scope of competencies covered in the technical training, the suggested proportion of time spent on each GAC, and the percentage of that time spent on theory versus practical application	
Program Content	Defines the objectives, learning tasks, high level content that must be covered for each competency, as well as defining observable, measureable achievement criteria for objectives with a practical component	Identifies detailed program content and performance expectations for competencies with a practical component; may be used as a checklist prior to signing a recommendation for certification (RFC) for an apprentice	Provides detailed information on program content and performance expectations for demonstrating competency	Allows individual to check program content areas against their own knowledge and performance expectations against their own skill levels
Training Provider Standards	Defines the facility requirements, tools and equipment, reference materials (if any) and instructor requirements for the program	Identifies the tools and equipment an apprentice is expected to have access to; which are supplied by the training provider and which the student is expected to own	Provides information on the training facility, tools and equipment provided by the school and the student, reference materials they may be expected to acquire, and minimum qualification levels of program instructors	Identifies the tools and equipment a tradesperson is expected to be competent in using or operating; which may be used or provided in a practical assessment

Section	Training Providers	Employers/ Sponsors	Apprentices	Challengers
Appendix- Assessment Guidelines	Identifies the percentage weight of theory and practical assessment in technical training		Identifies the percentage weight of theory and practical assessment in technical training	
Appendix- Glossary of Acronyms			Defines program specific acronyms	Defines program specific acronyms
Appendix- Previous Contributors	Provides information on previous contributors to the Program Outline review	Provides information on previous contributors to the Program Outline review	Provides information on previous contributors to the Program Outline review	Provides information on previous contributors to the Program Outline review

Section 2 PROGRAM CONTENT

Machinist

Program Credentialing Model

Apprenticeship Pathway

This graphic provides an overview of the Machinist apprenticeship pathway.

CROSS-PROGRAM CREDITS

Individuals who hold the credentials listed below are entitled to receive partial credit toward the completion requirements of this program

Occupational Analysis Chart

MACHINIST

Occupation Description: A Machinist is someone who turns blocks of metal into complex, intricate metal parts for other products. They fit and assemble metal parts and sub-assemblies, ensuring the parts in these products meet exacting standards in size, strength and hardness. A Machinist sets up and operates all machine tools such as Lathes, Milling Machines Saws, Grinding Machines, Drilling and Boring Machines, Shapers, Planers, Precision Measuring tools, Hand and Power tools, and the related attachments and accessories, including C.N.C. machining, selection, use and maintenance of cutting tools.

SELECT MATERIALS	Describe principles of metallurgy	Describe characteristics of ferrous metals	Describe characteristics of non-ferrous metals	Describe characteristics of non-metals	Perform heat treating	Perform materials testing
F	F1	F2	F3	F4	F5	F6
	Describe the use and maintenance of fuel gas equipment					
	F7					
REFURBISH COMPONENTS	Identify fasteners	Identify lubricants and sealants	Describe bearings, seals and bearing materials			
G	G1	G2	G3			
USE DRILLING MACHINES	Describe drilling machines	Select and maintain cutting tools	Operate and maintain drilling machines			
н	H1	H2	H3			
USE POWER SAWS	Describe power saws	Select and maintain band saw blades	Operate and maintain band saws	Operate and maintain other saws		
I		I2	I3	I4		
USE LATHES	Describe lathes	Describe cutting tools and holders	Operate and maintain lathes	Cut tapers	Cut threads	Describe vertical lathes
1	J1	J2	J3	J4 1	J5 23	J6

Training Topics and Suggested Time Allocation

Training Topics and Suggested Time Allocation shows the proportionate representation of general areas of competency (GACs) at each program level, the suggested proportion of time spent on each GAC, and percentage of time spent on theory versus practical application.

MACHINIST – LEVEL 1

% of Time Allocated to:

		% of Time	Theory	Practical	Total
Line A A1 A2	PERFORM SAFETY RELATED TASKS Describe Occupational Health and Safety Regulations Describe WHMIS and Hazardous Materials Safety (HAZMAT)	11%	80% ✓ ✓	20%	100%
A3 A4	Apply safety practices for shop areas Use lifting equipment		√ √	\checkmark	
Line B B1 B2 B3 B4	PERFORM HAND PROCESSES Use and maintain hand tools Use layout tools Use and maintain handheld power tools Mark material and workpiece for identification	9%	40% ✓ ✓ ✓	60% ✓ ✓ ✓	100%
Line C C1 C2 C3 C4 C5	USE APPLIED MATHEMATICS Solve problems involving formulas Perform metric/imperial conversions Solve problems involving geometry Solve problems involving mass, area and volume Solve problems involving trigonometry	11%	100% ✓ ✓ ✓ ✓	0%	100%
Line D D1 D2 D3 D4 D5	USE MEASURING TOOLS Use linear and Vernier scales Use micrometers Use calipers and gauges Use dial indicators and digital readouts Use optical measuring equipment	9%	40% ✓ ✓ ✓ ✓	60% ✓ ✓ ✓	100%
Line E	INTERPRET DRAWINGS AND REFERENCE MATERIALS	8%	80%	20%	100%
E1 E2 E3 E4	Interpret information found on drawings Determine project requirements Sketch machined parts Use Machinery's Handbook and other reference materials		✓ ✓ ✓	✓	
E5	Describe fits and tolerances		✓	✓	
Line F F1 F2 F7	SELECT MATERIALS Describe principles of metallurgy Describe characteristics of ferrous metals Describe the use and maintenance of fuel gas equipment	8%	100% ✓ ✓	0%	100%

% of Time Allocated to:

		% of Time	Theory	Practical	Total
Line G G1 G2	REFURBISH COMPONENTS Identify fasteners Identify lubricants and sealants	3%	100% ✓ ✓	0%	100%
Line H H1 H2 H3	USE DRILLING MACHINES Describe drilling machines Select and maintain cutting tools Operate and maintain drilling machines	9%	40% ✓ ✓ ✓	60% ✓ ✓	100%
Line I I1 I2 I3 I4	USE POWER SAWS Describe power saws Select and maintain band saw blades Operate and maintain band saws Operate and maintain other saws	3%	40% ✓ ✓ ✓	60% ✓ ✓ ✓	100%
Line J J1 J2 J3 J4	USE LATHES Describe lathes Describe cutting tools and holders Operate and maintain lathes Cut tapers	20%	40% ✓ ✓ ✓	60% ✓ ✓	100%
Line K K1 K2	USE MILLING MACHINES Describe milling machines Describe cutting tools and holders	3%	100% ✓ ✓	0%	100%
Line L L1 L2 L3	USE SUPPORT MACHINES Operate and maintain pedestal grinders Operate and maintain arbour and hydraulic presses Operate and maintain hones and lapping machines	6%	50% ✓ ✓	50% ✓ ✓	100%
	Total Percentage for Machinist Level 1	100%			

Training Topics and Suggested Time Allocation

MACHINIST – LEVEL 2

		% of Time	Theory	Practical	Total
Line C C1 C3 C5	USE APPLIED MATHEMATICS Solve problems involving formulas Solve problems involving geometry Solve problems involving trigonometry	11%	100% ✓ ✓ ✓	0%	100%
Line D D3 D4 D5	USE MEASURING TOOLS Use calipers and gauges Use dial indicators and digital readouts Use optical measuring equipment	4%	40% ✓ ✓ ✓	60% ✓ ✓	100%
Line E	INTERPRET DRAWINGS AND REFERENCE MATERIALS	2%	100%	0%	100%
E4 E5	Use Machinery's Handbook and other reference materials Describe fits and tolerances		√ √		
Line F F3 F4 F5	SELECT MATERIALS Describe characteristics of non-ferrous metals Describe characteristics of non-metals Perform heat treating	7%	80% ✓ ✓	20% √	100%
Line J J2 J5	USE LATHES Describe cutting tools and holders Cut threads	14%	40% ✓ ✓	60% √	100%
Line K K1 K2 K3 K4	USE MILLING MACHINES Describe milling machines Describe cutting tools and holders Use dividing heads and rotary tables Operate and maintain milling machines	18%	40% ✓ ✓ ✓	60% ✓ ✓	100%
Line L L3	USE SUPPORT MACHINES Operate and maintain hones and lapping machines	2%	60% ✓	40% ✓	100%
Line M M1 M2 M3	USE PRECISION GRINDERS Describe types of precision grinders Select abrasives Operate and maintain grinders	10%	50% ✓ ✓	50% ✓ ✓	100%
Line N N1 N2 N3	USE CNC MACHINES Describe CNC turning centres Establish co-ordinate systems and apply programming codes for turning centres Operate and maintain CNC turning centres	32%	50% ✓ ✓	50% ✓ ✓	100%
	Total Percentage for Machinist Level 2	100%			

Training Topics and Suggested Time Allocation

MACHINIST – LEVEL 3

		% of Time	Theory	Practical	Total
Line C C1 C5	USE APPLIED MATHEMATICS Solve problems involving formulas Solve problems involving trigonometry	5%	100% ✓ ✓	0%	100%
Line D D3 D4	USE MEASURING TOOLS Use calipers and gauges Use dial indicators and digital readouts	5%	30% ✓ ✓	70% ✓ ✓	100%
Line E	INTERPRET DRAWINGS AND REFERENCE MATERIALS	7%	100%	0%	100%
E4	Use Machinery's Handbook and other reference materials		✓		
Line F F5 F6	SELECT MATERIALS Perform heat treating Perform materials testing	9%	80% ✓ ✓	20% ✓ ✓	100%
Line G G3	REFURBISH COMPONENTS Describe bearings, seals and bearing materials	3%	100% ✓	0%	100%
Line J J5 J6	USE LATHES Cut threads Describe vertical lathes	9%	30% ✓ ✓	70% ✓	100%
Line K K3 K4 K5	USE MILLING MACHINES Use dividing heads and rotary tables Operate and maintain milling machines Describe boring mills	12%	40% ✓ ✓	60% ✓ ✓	100%
Line M M1 M3	USE PRECISION GRINDERS Describe types of precision grinders Operate and maintain grinders	9%	30% ✓ ✓	70% ✓	100%
Line N N4 N5	USE CNC MACHINES Describe CNC machining centres Establish co-ordinate systems and apply programming codes for machining centres	41%	50% ✓ ✓	50% ✓	100%
N6 N7 N8	Operate and maintain CNC machining centres Create 2D and 3D models Program using CAM		✓ ✓ ✓	~	
	Total Demonstrate for Marchinist Level 2	100%			

% of Time Allocated to:

Total Percentage for Machinist Level 3

100%

Training Topics and Suggested Time Allocation

MACHINIST - LEVEL 4

% of Time Allocated to:

		% of Time	Theory	Practical	Total
Line A A3	PERFORM SAFETY RELATED TASKS Apply safety practices for shop areas	2%	100% ✓	0%	100%
Line E	INTERPRET DRAWINGS AND REFERENCE MATERIALS	7%	100%	0%	100%
E4	Use Machinery's Handbook and other reference materials		✓		
Line L L4 L5	USE SUPPORT MACHINES Operate and maintain gear cutting machines Operate and maintain EDM	33%	50% ✓ ✓	50% ✓ ✓	100%
Line N N7 N8	USE CNC MACHINES Create 2D and 3D models Program using CAM	58%	30% ✓ ✓	70% ✓ ✓	100%
	Total Percentage for Machinist Level 4	100%			

Section 3 PROGRAM CONTENT

Machinist

Level 1 Machinist

Line (GAC): A PERFORM SAFETY RELATED TASKS

Competency: A1 Describe Occupational Health and Safety Regulations

Objectives

2.

To be competent in this area, the individual must be able to:

• Describe the Federal-Provincial Occupational Health and Safety Regulations.

LEARNING TASKS

Regulations

CONTENT

1. Define terms used in Federal-Provincial Occupational Health and Safety Regulations

Describe the Occupational Health and Safety

- Workers Compensation Act
- Industrial Health and Safety Regulations
- Federal Regulations
- Other Federal jurisdictions
- WHMIS (Workplace Hazardous Materials Information System) Definitions, Section 1 of the Act
- Housekeeping
 - Confined Space
 - Material Storage
 - o Ladders/Scaffolding
 - o Fall Arrest
 - WHMIS
 - o Lockout/Tagout procedures
 - Ventilation requirements
 - o Chemical and Biological substances
 - Noise, vibration, radiation and temperature
 - Personal protective equipment requirements
 - o Accident reporting requirements

Line (GAC): A PERFORM SAFETY RELATED TASKS

Competency:

Describe Workplace Hazardous Materials Information System (WHMIS) Regulations and Hazardous Materials Safety (HAZMAT)

Objectives

To be competent in this area, the individual must be able to:

A2

- Describe the HAZMAT (Hazardous Materials Safety) and the WHMIS regulations.
- Interpret material information sheets (SDS (Safety Data Sheets) and HAZMAT).
- Apply knowledge of WHMIS and HAZMAT regulations to maintain a safe working environment.

LEARNING TASKS

- 1. Describe HAZMAT regulations for the transportation of hazardous materials
- 2. State the legislation that requires suppliers of hazardous materials to provide SDS and label products as a condition of sale and importation
- 3. State the work purpose of the Workplace Hazardous Materials Information System (WHMIS)

- 4. Describe the key elements of WHMIS
- 5. Describe the responsibilities of suppliers under WHMIS
- 6. Describe the responsibilities of employers under WHMIS

CONTENT

- Signage
- Reporting incidents
- Safe handling and cleanup procedures
- Transporting
- Hazardous Product Act
- Controlled Products Regulations
- Ingredient Disclosure List
- Hazardous Materials Information Review Act
- Hazardous Material Information Review Regulations
- Protection of Canadian workers from the adverse effects of hazardous materials through the provision of relevant information while minimizing the economic impact on industry and the disruption of trade
- Recognition of rights
 - Workers
 - o Employers
 - o Suppliers
 - o Regulations
- Safety Data Sheets (SDSs)
- Labeling of containers of hazardous materials
- Worker educational programs
- Provide
 - o SDSs
 - o Labels
 - Provide o SDSs

LEARNING TASKS

7. Describe information to be disclosed on a SDS

CONTENT

- o Labels
- Work education programs in the workplace
- Hazardous ingredients
- Preparation information
- Product information
- Physical data
- Fire or explosion
- Reactivity data
- Toxicological properties
- Preventive measures
- First Aid measures
- Compressed gases
- Flammable and combustible materials
- Oxidizing materials
- Poisonous and infectious materials
 - Materials causing immediate and serious side effects
 - Materials causing other toxic effects
 - Biohazardous infectious materials
- Corrosive materials
- Dangerously reactive materials
- Use, storage and disposal of
 - o Solvents
 - Cutting fluids
 - Materials
 - Metals
 - Plastic
 - Caustic cleaners
 - Cleaning solutions
 - Alcohol used for cleaning
 - Oxy-acetylene
 - o Asbestos
 - o Tracer dyes
- HAZMAT
- WHMIS

8. Identify symbols found on WHMIS labels and their meaning

9. Apply WHMIS regulations as they apply to hazardous materials used in the shop

10. Maintain safe working area

Line (GAC):APERFORM SAFETY RELATED TASKS

Competency A3 Apply safety practices for shop areas

Objectives

To be competent in this area, the individual must be able to:

- Apply personal safety measures.
- Identify and use shop emergency equipment.
- Prevent, identify and extinguish various classes of fires.

LEARNING TASKS

1. Apply personal safety precautions and procedures

CONTENT

- Personal apparel
 - Clothing
 - o Hair and beards
 - o Jewellery
- Personal protection
 - o Head
 - Hands
 - o Lungs
 - o Eyes
 - Ears
 - o Feet
- Safety meeting
- Housekeeping
- Equipment and machine lock-out
- Ventilation systems
- Adequate lighting
- Clear-headed
 - Substance abuse
 - Sleep deprivation
 - o Personal distractions
- Horseplay
- Respect for others safety
- Constant awareness of surroundings
- Lifting
- WorkSafe BC requirements
- Electrical isolation
- Lock and tag
- Secure other systems
 - Mechanical
 - Hydraulic
- Pneumatic

SKILLED TRADES^{BC}

HARMONIZED PROGRAM OUTLINE Program Content Level 1

LEARNING TASKS

4.

5.

fire

3. Locate shop emergency equipment and means of egress

Describe the conditions necessary to support a

Describe the classes of fires according to the

CONTENT

- Emergency shutoffs
- Fire control systems
- Eye wash facilities
- Emergency exits
- First aid facilities
- Emergency contact phone numbers
- Evacuation procedures
- Outside meeting place
- Disaster meeting place
- Air
- Fuel
- Heat
- Class A
- Class B
- Class C
- Class D
- Symbols and colours
- Solvents
- Heat treatment salts
- Oxygen
- Acetylene
- LPG and CNG
- Ventilation
 - Purging
- Lubricants
- Oily rags
- Combustible metals
- Aerosols
- Warning others and fire departments
- Evacuation of others
- Containable fire
- Personal escape route
- Training
- P.A.S.S.
- o Pull
 - o Aim
 - Squeeze
 - o Sweep

materials being burned

6. Apply preventative fire safety precautions when working near, handling or storing flammable liquids or gases, combustible materials and electrical apparatus

- 7. Describe the considerations and steps to be taken prior to fighting a fire
- 8. Describe the procedure for using a fire extinguisher

LEARNING TASKS

9. Explain how a mentor can help an apprentice

CONTENT

- Acceptance of constructive criticism
- Listening skills
- Accountability
- Patience
- Share
 - Experiences
 - Knowledge
- Pride in trade

Line (GAC): PERFORM SAFETY RELATED TASKS A

Competency A4 Use lifting equipment

Objectives

3.

To be competent in this area, the individual must be able to:

- Apply the Occupational Health and Safety Regulation to lifting and blocking applications.
- Select, use and maintain lifting, securing and blocking equipment.

LEARNING TASKS

- Apply the Occupational Health and Safety 1. Regulation
- CONTENT
- Parts 14 and 15 •

2. Determine load masses

Types •

•

- Capacities •
- Manufacturer's specification •
- Estimation • Types
- Select, use and maintain securing equipment
- 4. Select, use and maintain wire ropes, chains and lifting straps
- 5. Use visual and sound signals
- Select, use and maintain hoisting equipment 6.

- 7. Lift, hoist and move loads
- 8. Manoeuvre large objects

Material racks 0 0 Blocking

0

Load capacities •

Clamps

- Types
- Capacities •
- **Rigging attachments** •
- Lifting attachments •
- Occupational Health and Safety Regulation • (Part 15)
- Types •
- Capacities
- Operation
- Equipment storage •
- Visual inspection
 - Expiry date 0
 - 0 Damage
 - Defects 0
- Determine safe working load •
- Determine correct slinging procedure •
- Flipping •
- Rotating •
- Centre of gravity •
- Sling or chain placement •

Line (GAC): B PERFORM HAND PROCESSES

Competency: B1 Use and maintain hand tools

Objectives

To be competent in this area, the individual must be able to:

- Select, use and maintain hand tools.
- Select, use and maintain appropriate guarding and personal protective equipment.

LEARNING TASKS

1. Use protective equipment associated with the use of tools and shop equipment

CONTENT

- Personal protection
 - o Head
 - o Hands
 - o Lungs
 - Eyes
 - Ears
 - o Feet
 - Clothing
- Screening
- Guarding
- Ventilation
- Clean up
- Lock out
- 2. Select, use and maintain hand tools
- Plan sequence of operations
- Wrenches
- Screwdrivers
- Cutting
 - Saws
 - o Abrasives
 - Files
 - o Taps and dies
- Hammers
- Chisels/punches
- Clamping tools
- Pullers
- Vises

Achievement Criteria

Performance The learner will be able to produce a drill-point gauge.

Conditions The learner will be given:

- Material
- Measuring tools

The learner will be evaluated on:

- Layout tools
- Files
- Hacksaws
- Drills

Criteria

- Accuracy
- Tolerances
- Finish

Line (GAC): B PERFORM HAND PROCESSES

Competency: B2 Use layout tools

Objectives

To be competent in this area, the individual must be able to:

• Perform layout procedures.

LEARNING TASKS

1. Select layout tools

CONTENT

- Layout dye
- Scribers
- Dividers
- Centre punch
- Height gauges
- Rulers
- Combination set
- Surface gauge
- V-blocks
- Angle plates
- Material selection
 - Adequate stock size
- Establish procedures steps
- Datum points
- Datum faces
- Tool selection
- As in Learning Task 1 and 2

2. Describe layout procedures

3. Perform layout procedures

Line (GAC): В PERFORM HAND PROCESSES

Competency: B3 Use and maintain handheld power tools

Objectives

2.

To be competent in this area, the individual must be able to:

- Describe handheld power tool safety. ٠
- Select, use and maintain handheld power tools and accessories.

LEARNING TASKS

CONTENT

1. Describe handheld power tool safety

Select handheld power tools

- Personal protective equipment
- Guards
- Electrical cords •
- **Operating procedures** • Securing work 0
- Compressed air •
- Tool maintenance
- Electric .
 - Cutting 0
 - Grinding 0
 - Drilling 0
- Pneumatic
 - 0 Cutting
 - Grinding 0
 - 0 Drilling
- accessories
- 3. Select and maintain handheld power tool
- Grinding disk speeds •
- Burr speeds .
- Cut-off wheels •
- Abrasive discs
- Saw blades
 - Band 0
 - Circular 0

Use handheld power tools 4.

As in learning tasks 2 and 3 •

Line (GAC): B PERFORM HAND PROCESSES

Competency: B4 Mark material and workpiece for identification

Objectives

To be competent in this area, the individual must be able to:

- Identify and describe marking procedures.
- Mark material and workpiece without causing functional damage.

LEARNING TASKS

CONTENT

- 1. Identify and describe material and workpiece marking procedures
- Etching
- Engraving
- Colour coding
- Stamping
- Engraving
 - Colour coding
 - Ink stamping
 - Acid etching

2. Mark material and workpiece

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C1 Solve problems involving formulas

Objectives

To be competent in this area, the individual must be able to:

- Perform calculations using formulas.
- Solve problems using algebra.
- Calculate ratios.

LEARNING TASKS

1. Use formulas

2. Use a scientific calculator

- 3. Use algebra
- 4. Apply ratios

- CONTENT
- Trigonometry
- Feeds and Speeds
- Circumference
- Area
- Volume
- Mass
- Tapers
- Brackets
- Memory
- Fractions
- Percentages
- Conversions
- Trigonometry
- Inversion
- Power
- Roots
- Constants
- Proportions
- Transpose formulas
- Direct
- Inverse

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C2 Perform metric/imperial conversions

Objectives

To be competent in this area, the individual must be able to:

• Perform metric/imperial conversions.

LEARNING TASKS

1. Define metric units

CONTENT

- Length
- Mass
- Volume
- Temperature

Place value

Scientific notation

- 2. Define metric prefixes
- 3. Define imperial units

• Length

•

.

- Mass
- Volume
- Temperature
- Length
- Mass
- Volume
- Temperature

4. Calculate conversions

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C3 Solve problems involving geometry

Objectives

To be competent in this area, the individual must be able to:

- Identify types of angular geometric principles.
- Perform geometric constructions.

LEARNING TASKS

1. Identify geometric principles

CONTENT

- Bisect lines
- Bisect angles
- Right angles
- Perpendicular lines
- Parallel lines
- Arcs
- Tangents

2. Describe geometric figures

- Circle
- Sphere
- Rectangle
- Triangle
- Trapezoid
- Ellipse
- 3. Perform geometric constructions
- Generate basic geometric figures
 - o Circle
 - o Rectangle
 - o Triangle
 - o Trapezoid
- Perpendicular bisector of a line
- Perpendicular at point on a line segment
- Lines parallel to a given line
- Bisect a given angle
- Tangents to a circle
- Divide a line segment

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C4 Solve problems involving mass, area and volume

Objectives

To be competent in this area, the individual must be able to:

• Calculate mass, area and volume.

LEARNING TASKS

1. Calculate mass

CONTENT

- Weight
- o Steel

٠

- Aluminum
- o Fluids
- Specific Gravity

- 2. Calculate area
- 3. Calculate volume

• Three dimensional geometric shapes

Two dimensional geometric shapes

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C5 Solve problems involving trigonometry

Objectives

To be competent in this area, the individual must be able to:

• Apply trigonometry applications.

LEARNING TASKS

CONTENT

1. Describe trigonometry

- Pythagoras theorem
- Triangles
- Sine
- Cosine
- Tangent
- Bolt circles
- Layout procedures
 - Chords

2. Use applied trigonometry

Line (GAC): D USE MEASURING TOOLS

Competency: D1 Use linear and Vernier scales

Objectives

To be competent in this area, the individual must be able to:

• Use linear and Vernier scales.

LEARNING TASKS

CONTENT

- 1. Describe linear and Vernier scales
- Imperial rule
- Metric rule
- Decimal rule
- Caliper and Height Gauges
 - o Vernier
 - o Dial
 - o Digital
- Protractor
- Care and maintenance
- Imperial rule
 - Metric rule
 - Decimal rule
 - Caliper and Height Gauges
 - o Vernier
 - o Dial
 - o Digital
 - Protractor
 - Care and maintenance

2. Use linear and Vernier scales

Line (GAC): D USE MEASURING TOOLS

Competency: D2 Use micrometers

Objectives

1.

To be competent in this area, the individual must be able to:

• Use and maintain a micrometer.

LEARNING TASKS

Describe micrometers

CONTENT

- Types
 - Outside
 - o Inside
 - o Depth
 - o Thread
- Parts
- Calibrate
- Care and Maintenance
- Types
 - Outside
 - o Inside
 - o Depth
 - o Thread
- Parts
- Calibrate
- Care and Maintenance

2. Use micrometers

Line (GAC): D USE MEASURING TOOLS

Competency: D3 Use calipers and gauges

Objectives

To be competent in this area, the individual must be able to:

• Use calipers and gauges.

LEARNING TASKS

CONTENT

1. Describe calipers

- Types
 - o Inside
 - o Outside
 - o Hermaphrodite
 - o Transfer

- 2. Describe gauges
- 3. Use calipers
- 4. Use gauges

- Types • Radius
 - Telescopic
 - Types

•

•

- o Inside
- Outside
- Hermaphrodite
- o Transfer
- Types
 - o Radius
 - Telescopic

Line (GAC): D USE MEASURING TOOLS

Competency: D4 Use dial indicators and digital readouts

Objectives

To be competent in this area, the individual must be able to:

• Use dial indicators.

LEARNING TASKS

CONTENT

1. Describe dial indicators

- Types and features
 - Clock type
 - Finger type
- Graduations
- Accessories
- Care and maintenance
- True workpiece
 - o Lathe
- Comparing measurements
- Setting up
- Measuring
- Workpiece inspection
- Care and maintenance

2. Use dial indicators

Line (GAC): D USE MEASURING TOOLS

Competency: D5 Use optical measuring equipment

Objectives

To be competent in this area, the individual must be able to:

• Describe optical measuring equipment.

LEARNING TASKS

CONTENT

1. Describe optical comparators

- Types
 - Profiles
 - o Reflection
- Components
 - o Light source
 - o Screen
 - o Lenses
 - o Table with micrometer adjustment
 - Centre
 - o Vise
 - Angle plate
- Applications
 - Measuring
 - Thread forms
 - Profiles
 - Engraving
 - Angles
 - Radii

Line (GAC): E INTERPRET DRAWINGS AND REFERENCE MATERIALS

Competency: E1 Interpret information found on drawings

Objectives

1.

2.

To be competent in this area, the individual must be able to:

• Identify information found on drawings.

LEARNING TASKS

Identify lines found in drawings

CONTENT

- Line types
- o Solid
- Centre
- o Hidden
- Extension
- Dimension
- o Section
- Construction
- Purpose
- Application
- Symbol types
 - o Surface finish
 - o Welding
 - o Datum
 - o Geometric tolerance
 - o Diameter
 - o ISO
- Purpose
- Application
- Types
- Orthographic projections
 - \circ 1st and 3rd angle
 - Isometric views
 - Oblique views
 - Shop Sketches (working drawings)
- Purpose
- Application

Identify symbols found in drawings

3. Identify views and projections

LEARNING TASKS

4. Interpret title block information

CONTENT

- Scale
- Revisions
- Date
- Material
 - o Type
 - o Size
- Tolerances
- Projection type
- Measurement system

Line (GAC): E INTERPRET DRAWINGS AND REFERENCE MATERIALS

Competency: E2 Determine project requirements

Objectives

To be competent in this area, the individual must be able to:

- Determine project requirements from a drawing or sample.
- •

LEARNING TASKS

CONTENT

0

- 1. Determine project requirements
- Drawing / sample assessment
 - Requirements
 - Tooling
 - Benchwork
 - Machines
 - Materials
 - Fixturing
- QC / QA

Line (GAC): E INTERPRET DRAWINGS AND REFERENCE MATERIALS

Competency: E3 Sketch machined parts

Objectives

To be competent in this area, the individual must be able to:

- Sketch and dimension an orthographic drawing from an existing part.
- Sketch and dimension an orthographic drawing from an isometric or oblique view.

LEARNING TASKS

CONTENT

- 1. Sketch and dimension an orthographic drawing from an existing part
- Information required for part manufacture
- Necessary views
- Dimensioning
- Material
- Tolerances
- 2. Sketch and dimension an orthographic drawing from an isometric or oblique view
- Information required for part manufacture
- Necessary views
- Dimensioning
- Material
- Tolerances

Achievement Criteria

Performance The learner will be able to sketch an isometric and orthographic drawing.

- Conditions The learner will be given:
 - Part / drawing
 - Ruler
 - Graph paper
- Criteria The learner will be evaluated on:
 - Clarity
 - Neatness
 - Dimensioning

Line (GAC): E INTERPRET DRAWINGS AND REFERENCE MATERIALS

Competency: E4 Use Machinery's Handbook and other reference materials

Objectives

To be competent in this area, the individual must be able to:

- Identify and locate information in the Machinery's Handbook.
- Use other reference materials and resources to locate information.

LEARNING TASKS

CONTENT

- 1. Identify information found in the Machinery's Handbook
- Types
 - Charts
 - o Tables
 - Threads
- 2. Locate information in the Machinery's Handbook
- Familiarization with book layout
- Index
- Section tabs
- Tables
- Thread data
- Fits and tolerances
- Formulas
- Speeds and feeds
- 3. Use other reference materials
- Tooling catalogues
- Trade specific magazines
- Trade bulletins
- Internet
- Machine manuals
- Job plan
 - Machine limitations
- Quality Control Documentation
 - Inspection sheets
 - o Blueprints

Line (GAC): E INTERPRET DRAWINGS AND REFERENCE MATERIALS

Competency: E5 Describe fits and tolerances

Objectives

1.

To be competent in this area, the individual must be able to:

• Describe fits and tolerances.

Describe fits and tolerances

LEARNING TASKS

- Standards

CONTENT

- o ANSI
- o ISO
- Types
 - Fits
- Tolerances
- Applications
- Types

.

- Methods of Measurement
 - Comparative
 - o Stylus
- Applications

2. Describe surface finishes

Line (GAC): F SELECT MATERIALS

Competency: F1 Describe principles of metallurgy

Objectives

To be competent in this area, the individual must be able to:

• Describe the manufacture of iron and steel.

LEARNING TASKS

CONTENT

1. Describe smelting process

- Coke
- Iron ore
- Limestone
- Process
- 2. Describe steel manufacturing processes
- Pig iron
- Cast iron
- Hot rolled & cold rolled
 - Plain carbon steel
 - o Alloy Steel

Line (GAC): F SELECT MATERIALS

Competency: F2 Describe characteristics of ferrous metals

Objectives

To be competent in this area, the individual must be able to:

- Describe the SAE and AISI classifications.
- Identify steel characteristics by their designations.

LEARNING TASKS

1. Describe Society of Automotive Engineers (SAE) and American Iron and Steel Institute (AISI) classifications

CONTENT

- Plain carbon steels
- Standard alloy steels
- Tool steels
- Stainless steels
- Numbering system
- 2. Identify steel characteristics by their designations
- Carbon content
- Alloying elements
- Physical properties:
 - Wear resistance
 - Weight
 - o Flexibility
 - Hardness
 - Toughness
 - Corrosion resistance
 - o Ductility
 - o Machinability
 - Conductivity
 - o Thermal
 - Electrical
- Applications

Line (GAC): F SELECT MATERIALS

Competency: F7 Describe the use and maintenance of fuel gas equipment

Objectives

To be competent in this area, the individual must be able to:

• Describe the operation and maintenance of fuel gas equipment.

LEARNING TASKS

CONTENT

- 1. Describe the operation and maintenance of fuel gas equipment
- Safety considerations
- System set-up
- Torch Operations
 - o Welding
 - Cutting
 - Soldering
 - o Brazing
- Oxyacetylene and MAPP gas
 - Flashback arrestors
 - Regulators
- Propane
 - o Liquid and gas
 - Temperature
 - Ventilation
- Maintenance of fuel gas equipment
- Storage of fuel gas equipment
 - Recognizing worn, damaged or defective fuel gas equipment

Line (GAC): G REFURBISH COMPONENTS

Competency: G1 Identify fasteners

Objectives

To be competent in this area, the individual must be able to:

• Identify fasteners for applications.

LEARNING TASKS

CONTENT

1. Identify fastener types

- Rivets
- Dowels/pins
- Threaded fasteners
 - Metric/Imperial
 - o Grades/Markings
- Washers
- Locking devices
- Retainers

Line (GAC): G REFURBISH COMPONENTS

Competency: G2 Identify lubricants and sealants

Objectives

To be competent in this area, the individual must be able to:

• Describe lubricants and sealants and their applications

LEARNING TASKS

CONTENT

1. Describe lubricants

- Purpose
- Types
 - o Oils
 - o Greases
 - o Dry Lubricants
- Applications
- Purpose
- Types
- Applications

2. Describe sealants

Line (GAC): Η **USE DRILLING MACHINES**

Competency: H1 Describe drilling machines

Objectives

To be competent in this area, the individual must be able to:

Describe drilling machines and their applications. ٠

LEARNING TASKS

CONTENT

1. Describe drilling machines

- Types
 - Sensitive 0
 - Radial arm 0
 - Magnetic base 0
 - Upright 0
- Machine size .
- Applications .
- Identify the parts of the drilling machines 2.
- Column Table •

•

- Base •
- Spindle •
- Chuck •
- Quill feed •
- Power feed •
- Describe work holding devices
- Types •
 - V-block 0
 - Vise 0
 - Angle plate 0
 - Jigs and fixtures 0
 - Drill bushings
- Clamps and hold-downs •

3.

Line (GAC): H USE DRILLING MACHINES

Competency: H2 Select and maintain cutting tools

Objectives

To be competent in this area, the individual must be able to:

• Select and maintain cutting tools.

LEARNING TASKS

- 1. Select cutting tools

Types

CONTENT

- o Drills
- o Reamers
- Countersinks
- Counterbores
- o Spot facer
- o Taps

•

- o Boring bars
- Hole saws
- Drill sharpening
- Point-angle
- Flat bottom
- Split point
- Web thinning
- o Brassing
- Boring tools

2. Maintain cutting tools

Line (GAC): H USE DRILLING MACHINES

Competency: H3 Operate and maintain drilling machines

Objectives

To be competent in this area, the individual must be able to:

- Perform clamping and fixturing.
- Operate and maintain drilling machine.

LEARNING TASKS

CONTENT

- 1. Calculate speeds (RPM) and feeds
- Surface speed
- Diameter of cutter
- Chip load

2. Perform clamping

- Safety concerns
- Types
 - V-blocks
 - o Vises
 - Angle plates
 - Jigs and fixtures
 - Drill bushings
- Clamps and hold-downs
- Types
 - o Chucks
 - o Sleeves
 - Tapping heads
 - Boring bar
 - Accessories
 - o Drift
 - Chuck key

3. Install and remove tooling

LEARNING TASKS

3. Operate drilling machines

CONTENT

- Layout material
- Centre punch
- Pulling a drill
- Pilot drill
- Drill
- Chamfer
- Ream
- Counter bore
- Tap

•

5. Maintain drilling machines

- Clean
 - Housekeeping

Lubricate

- 6. Describe the purpose and usage of cutting fluids with drilling machines
- 7. Select types of cutting fluids for specific applications
- Lubrication
- Cooling
- Chip removal
- Tool life
- Types
 - o Straight oils
 - o Soluble oils
 - o Semi-synthetic
 - o Synthetic
 - Misting

Achievement Criteria

Performance The learner will be able to drill and tap a block to specifications.

- Conditions The learner will be given:
 - Material
 - Measuring tools
 - Layout tools
 - Drills
 - Taps

Criteria The learner will be evaluated on:

- Accuracy
- Tolerances
- Finish

Line (GAC): I USE POWER SAWS

Competency: I1 Describe power saws

Objectives

To be competent in this area, the individual must be able to:

• Describe power saws and their applications.

LEARNING TASKS

1. Describe power saws

CONTENT

- Types
 - o Band saw
 - Vertical
 - Horizontal
 - Cold saws
 - o Reciprocating
 - o Abrasive saw
- Parts
- Accessories
- Cut off
- Contour
- Types
 - o V-block
 - o Vises
 - o Fixtures

- 2. Describe power saw applications
- 3. Describe work holding devices

Line (GAC): I USE POWER SAWS

Competency: I2 Select and maintain band saw blades

Objectives

To be competent in this area, the individual must be able to:

• Select and maintain band saw blades.

LEARNING TASKS

1. Select band saw blades

CONTENT

•

- Materials Type
- Thickness
- o Shape
- Tooth selection
- Pitch selection
 - Variable pitch
- Blade types
 - o Bi-metal
 - o Carbon

2. Maintain band saw blades

- Butt weld
- Silver solder
- Storage procedures

Line (GAC): I USE POWER SAWS

Competency: I3 Operate and maintain band saws

Objectives

To be competent in this area, the individual must be able to:

- Install and remove blades.
- Operate and maintain band saws.

LEARNING TASKS

1. Set speeds and feeds

CONTENT

- Material
 - o Type
 - o Size
 - o Profile
- Blade
 - o Size
 - o Type
 - o Pitch
 - Tooth style
 - o Tooth set

- 2. Perform clamping
- 3. Install and remove blades

- Types
 - o V-block
 - o Vise
 - o Fixtures
- Clamps and hold-downs
- Blade
 - o Inspection
 - \circ Direction
 - o Alignment
 - o Tension
 - o Break in procedures
 - \circ Coiling
- Guide selection
- Clean guide wheels and guides
- Cut-off

LEARNING TASKS

4. Operate band saws

CONTENT

- Cut-off
 - o Speed and feed
 - o Power feed
 - Coolants and lubricants
 - Clamping
 - o Work support aids
- Contour
 - Speed and feed
 - o Power feed
 - Coolants and lubricants
 - Cutting aids
 - o Circle attachment
- Pusher
- 5. Quality control for component
- First article inspection
- Verify
 - o Material
 - o Drawing
 - Revision
 - Traceability
- Dimensional conformance
- Measuring tools calibrated

6. Maintain band saws

- Lubricate
- Clean

•

Housekeeping

Lubrication

- 7. Describe the purpose and usage of cutting fluids with band saws
- Cooling
- Chip removal
- Tool life
- 8. Select types of cutting fluids for applications
- Types
 - Straight oils
 - Soluble oils
 - o Semi-synthetic
 - Synthetic
 - o Misting

Line (GAC): I USE POWER SAWS

Competency: I4 Operate and maintain other saws

Objectives

To be competent in this area, the individual must be able to:

• Operate and maintain cold saws, abrasive saws, and reciprocating saws.

LEARNING TASKS

CONTENT

- 1. Operate and maintain cold saws
- Set speeds
- Work holding
- Blade selection
- Blade removal and installation
- Operation
- Maintenance
 - Lubricate
 - Clean
 - Housekeeping
- 2. Operate and maintain abrasive saws
- Work holding
- Wheel removal and installation
- Operations
- Maintenance
 - Lubricate
 - o Clean
- Housekeeping

Line (GAC): J USE LATHES

Competency: J1 Describe lathes

Objectives

To be competent in this area, the individual must be able to:

- Describe lathes and their applications.
- Identify parts of lathes and their functions.

LEARNING TASKS

CONTENT

1. Describe lathes

- Types
 - o Engine
 - o Turret
 - o Vertical
 - Boring
 - Turret
 - Tool room
 - Screw type
 - Swiss
 - CNC
- Size
 - o Swing
 - o Length
- 2. Identify the parts of the lathe and their function
- Bed

.

•

- Ways
- o Gap
- Headstock
 - o Spindle
 - Speed change
 - Spindle nose style
- Feed system
 - o Feed shaft
 - Lead screw
 - Change gears
 - Quick change gearbox
- Carriage
 - o Saddle
 - Compound slide
 - Cross slide
 - o Apron
 - Thread chasing dial
 - Feed levers

LEARNING TASKS

Describe lathe accessories

Describe lathe applications

3.

4.

CONTENT

- Tailstock
 - o Quill
 - Clamps
 - o Adjustment
- Face plate
- Steady rest
- Follower rest
- Cat head
- Spider
- Taper turning attachment
- Radius cutting attachment
- Tool post
 - American style
 - Square/Four-way box
 - Quick change
 - Boring bar holder
- Chuck
 - o Three-jaw
 - Four-jaw
 - o Six-jaw
 - Collet
 - o Magnetic
- Centers
- Turning
- Drilling
- Boring
- Threading
 - o Internal
 - o External
- Facing
- Tapers
- Knurling
- Contour
- Profile
- Parting
- Spring winding
- Radius turning

64

Line (GAC): J USE LATHES

Competency: J2 Describe cutting tools and holders

Objectives

To be competent in this area, the individual must be able to:

- Describe tool geometry.
- Describe cutting tools and holders and their applications.

LEARNING TASKS

CONTENT

1. Describe tool geometry

- Rake
- Relief
- Cutting edge angles
- Nose radius
- Chip breaker

2. Describe types of cutters

- Cutter materials
 - HSS
 - Carbide
- Turning
- Knurling
- Part off
- Form
- Threading
- Brazed carbide
- External
- Boring bars
- Parting tools
- Jacobs chuck
- Facing
- OD/ID turning
- Drilling operations
- Grooving
- Forming
- Threading
- Knurling
- Parting

3. Describe types of holders

4. Describe cutter applications

Line (GAC): J USE LATHES

Competency: J3 Operate and maintain lathes

Objectives

To be competent in this area, the individual must be able to:

- Calculate RPM.
- Operate and maintain lathes.

LEARNING TASKS

- 1. Calculate speeds (RPM) and feeds
- CONTENT
- Surface speed
- Diameter of work
- Chip load

•

•

•

Rigidity

Tooling

Horsepower

- 2. Determine depth of cut
- 3. Support and clamp workpiece

Install and remove tooling

- Material
 - o Size
 - o Shape
- Machining operation
- Rigidity
- Power
- Select tool for application
- Maintain tool
- Tool height
- Tool angle
- Plan sequence of operation
- Set-up sequence
 - Mounting workpiece
 - Truing workpiece
 - o Balancing workpiece
 - o Centering workpiece
- Roughing
 - o Speeds and feeds
 - o Cutters
 - o Depth of cut
 - Measuring
 - Material allowance for finishing

5. Operate lathes

4.

LEARNING TASKS

CONTENT

- Finishing
 - Speeds and feeds 0
 - Cutter 0
 - Depth of cut 0
 - Deburring 0
 - Measuring 0
- Operations
 - Facing 0
 - Turning 0
 - Drilling 0
 - 0 Boring
 - Tapers 0
 - Knurling 0
 - Parting 0
 - Forming 0
 - Radius 0

Verify

0 0

0

•

•

•

Chamfer 0

First article inspection

Dimensional conformance

Measuring tools calibrated

Material

Drawing - Revision Traceability

- 6. Quality control for component

7. Maintain lathes

- Lubricate Clean .
- Housekeeping •
- Coolant / cutting fluid •
- 8. Describe the purpose and usage of cutting fluids with lathes
- Lubrication •
- Cooling •
- Chip removal •
- Tool life •
- 9. Select types of cutting fluids for applications
- Types
 - Straight oils 0
 - Soluble oils 0
 - 0 Semi-synthetic
 - Synthetic 0

Achievement Criteria

Performance Using a lathe, the learner will be able to turn diameters and shoulders to specifications.

Conditions The learner will be given:

- Drawing
- Material
- Tools and equipment
- Measuring tools
- Criteria
- The learner will be evaluated on: • Accuracy
 - Tolerances
 - Finish

Line (GAC): J USE LATHES

Competency: J4 Cut Tapers

Objectives

To be competent in this area, the individual must be able to:

• Cut and measure tapers.

LEARNING TASKS

1. Describe tapers

CONTENT

- Standard
 - o Morse
 - o Jarno
 - Milling machine (NMTB)

- 2. Describe methods of cutting tapers
- 3. Calculate tapers

4. Cut tapers

- Taper attachment
 - o Plain
 - Telescoping
- Compound slide
- Tailstock offset
- Taper angle
 - Center line
 - Included
- Taper per inch/foot
- Taper (metric)
- Calculate tailstock offset
- Plan sequence of operation
- Set-up sequence
 - Angle set-up
 - Mounting workpiece
 - Truing workpiece
 - o Balancing workpiece
 - o Centering workpiece
- Roughing
 - Speeds and feeds
 - o Tools
 - $\circ \quad \text{Depth of cut} \quad$
 - Measuring
 - Material allowance for finishing
- Finishing
 - Speeds and feeds
 - Depth of cut

LEARNING TASKS

CONTENT

- Deburring
- \circ Measuring
- Measure
 - o Gauge
 - o Micrometer
 - o Dial indicator

Achievement Criteria

Performance Using a lathe, the learner will be able to turn tapers to specifications

- Conditions The learner will be given:
 - Drawing
 - Material
 - Tools and equipment
 - Measuring tools
- Criteria The learner will be evaluated on:
 - Accuracy
 - Tolerances
 - Finish

Line (GAC): K USE MILLING MACHINES

Competency: K1 Describe milling machines

Objectives

To be competent in this area, the individual must be able to:

• Describe milling machines and their accessories.

LEARNING TASKS

CONTENT

- 1. Describe types of milling machines
- Vertical spindle
 - o Ram type
 - o Ram turret
 - Gear head
- Horizontal spindle
 - o Plain
 - Universal
- Planer mill
- Bed mill
- CNC
- Base
- Column
- Knee
- Saddle
- Table
- Spindle nose
- Quill
- Backlash eliminator
- Over arm support
- Ram
- Turret

2. Identify the parts of the milling machine and their function

Line (GAC): K USE MILLING MACHINES

Competency: K2 Describe cutting tools and holders

Objectives

To be competent in this area, the individual must be able to:

• Describe cutting tools and holders.

LEARNING TASKS

CONTENT

- 1. Describe types of cutters and holders
- Horizontal and vertical
 - Face mill
 - $\circ \quad \text{End mill} \quad$
- Arbor
 - o Style C
- Holders
 - o Morse taper
 - Collet
 - o End mill

Line (GAC): L USE SUPPORT MACHINES

Competency: L1 Operate and Maintain Pedestal Grinders

Objectives

To be competent in this area, the individual must be able to:

• Operate and maintain pedestal grinders.

LEARNING TASKS

CONTENT

- 1. Identify abrasives and their applications
- Aluminum dioxide
- Silicon carbide
- Cubic boron nitride (CBN)
- Diamond
- 2. Describe the Standard Marking System
- 3. Operate and maintain pedestal grinder to sharpen a drill
- Grit
- Grade
- Structure
- Bond
- Personal Protective Equipment
- Wheel
 - Selection
 - o Safe operating speed
 - o Ring test
 - \circ Mounting
 - Guards
 - \circ Tool rest
 - o Truing and dressing
- Maintenance
 - Cleaning
 - o Visual inspection
- Housekeeping

Achievement Criteria

Performance Using a pedestal grinder, the learner will be able to sharpen a drill to specifications.

Conditions The learner will be given:

- Drills
- Tools and equipment
- Measuring tools

Criteria

- The learner will be evaluated on: • Hole size produced
 - Proper drill geometry

Line (GAC): L USE SUPPORT MACHINES

Competency: L2 Operate and maintain arbor and hydraulic presses

Objectives

2.

3.

To be competent in this area, the individual must be able to:

• Operate and maintain arbor and hydraulic presses.

LEARNING TASKS

1. Operate arbor presses

Maintain arbor presses

Operate hydraulic presses

CONTENT

- Safety precautions
 - Guards
 - o Personal protective equipment
 - Housekeeping
- Press set-up
 - Work piece alignment
- Fixturing
- Lubricate
- Clean
- Housekeeping
- Safety precautions
 - Guards
 - Personal protective equipment
 - Housekeeping
- Press set-up
 - Work piece alignment
 - Fixturing
 - o Table
 - o Adjustment
 - o Alignment
 - o Securement
 - o Ram positioning
- Relationship between force, pressure and area
- Hydraulics
 - Inspection
 - Fluid levels
- Lubricate
- Clean
- Housekeeping

4. Maintain hydraulic presses

Line (GAC): L USE SUPPORT MACHINES

Competency: L3 Operate and maintain hones and lapping machines

Objectives

To be competent in this area, the individual must be able to:

• Describe hones and lapping machines.

LEARNING TASKS

CONTENT

- 1. Describe hones and lapping machines
- Hones o Purpose
 - Construction
 - Applications
- Lapping machines
 - o Purpose
 - Construction
 - Applications

Level 2 Machinist

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C1 Solve Problems Involving Formulas

Objectives

To be competent in this area, the individual must be able to:

• Perform calculations using formulas.

LEARNING TASKS

CONTENT

1. Use formulas

- Chords
- Pitch circles

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C3 Solve problems involving geometry

Objectives

To be competent in this area, the individual must be able to:

• Solve geometric problems.

LEARNING TASKS

CONTENT

1. Solve geometric problems

- Point of tangency
- Corresponding angles
 - Complimentary angles
 - o Supplimentary angles

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C5 Solve problems involving trigonometry

Objectives

To be competent in this area, the individual must be able to:

• Apply trigonometry applications.

LEARNING TASKS

CONTENT

1. Use applied trigonometry

- Layout procedures
 - Chords
 - o Bolt-hole pattern
- Sine bar calculations

Line (GAC): D USE MEASURING TOOLS

Competency: D3 Use calipers and gauges

Objectives

2.

3.

To be competent in this area, the individual must be able to:

- Use gauges.
- Describe gauge blocks and sine bars

LEARNING TASKS

CONTENT

1. Describe gauges

Use gauges

- Types
 - o Thread
 - o Plug
 - o Taper
 - o Snap
 - \circ Ring
- Types
 - o Thread
 - o Plug
 - $\circ \quad Taper$
 - o Snap
 - \circ Ring

- Describe gauge blocks
- 4. Describe sine bars

- Types
- Materials
- Grades
- Types
- Sizes

Line (GAC): D USE MEASURING TOOLS

Competency: D4 Use dial indicators and digital readouts

Objectives

2.

To be competent in this area, the individual must be able to:

• Use dial indicators and digital readouts.

LEARNING TASKS

1. Use dial indicators

CONTENT

- True workpiece
- Milling machine
- Workpiece inspection
- Comparing measurements
- Setting up
- Measuring
- Workpiece inspection
- Care and maintenance
- Types
 - o Manual
 - o Programmable
- Parts
- Uses
 - o Lathe
 - Milling machine
- Care and maintenance
- Presets
- Types
- Manual
- Programmable
- Lathe
- Milling machine
- Care and maintenance

3. Use digital readouts

Describe digital readouts

Line (GAC): D USE MEASURING TOOLS

Competency: D5 Use optical measuring equipment

Objectives

To be competent in this area, the individual must be able to:

• Use optical measuring equipment.

LEARNING TASKS

CONTENT

1. Use optical comparators

- Applications
 - Measuring
 - Thread forms
 - Profiles
 - Angles
 - Radii
 - Dimensions

Line (GAC):EINTERPRET DRAWINGS AND REFERENCE MATERIALSCompetency:E4Use Machinery's Handbook and other reference materials

Objectives

To be competent in this area, the individual must be able to:

• Identify and locate information found in the Machinery's Handbook.

LEARNING TASKS

CONTENT

- 1. Identify information found in the Machinery's Handbook
- Types • Materials
- 2. Locate information in the Machinery's Handbook
- Material information
- Advanced thread data
- Fits and tolerances
- Formulas
- Speeds and feeds
- 3. Use other reference materials
- Job plan
 - Machine limitations
- Quality Control Documentation
 - Inspection sheets
 - o Blueprints

Line (GAC): E INTERPRET DRAWINGS AND REFERENCE MATERIALS

Competency: E5 Describe fits and tolerances

Objectives

To be competent in this area, the individual must be able to:

• Describe geometric dimensions and tolerances.

LEARNING TASKS

CONTENT

•

- 1. Describe geometric dimensions and tolerances
- Application
 - o Concentricity
 - o Roundness
 - o Parallelism
 - o Angularity
 - o Line and surface
 - o Flatness
 - o Perpendicularity
 - o Runout
 - o Total runout
 - o Datums

Line (GAC): F SELECT MATERIALS

Competency: F3 Describe characteristics of non-ferrous metals

Objectives

To be competent in this area, the individual must be able to:

• Describe the characteristics of non-ferrous metals.

LEARNING TASKS

CONTENT

- 1. Describe the classification of aluminum alloys
- Designations
 - Alloys
 - o Temper
- Physical properties
 - Wear resistance
 - o Weight
 - o Flexibility
 - o Hardness
 - Toughness
 - Corrosion resistance
 - o Ductility
 - o Machinability
 - o Conductivity
 - o Thermal
 - Electrical
 - Applications
- 2. Describe the UNS classifications of copper alloys
- Alloys

•

- Physical properties
 - Wear resistance
 - o Weight
 - o Flexibility
 - o Hardness
 - o Toughness
 - Corrosion resistance
 - o Ductility
 - o Machinability
 - o Conductivity
 - o Thermal
 - Electrical
- Heat treatment

LEARNING TASKS

CONTENT

- Applications
 - Electrical components
 - o Brass
 - Ornamental castings
 - o Bronze
 - Bearings
- Physical properties
 - Wear resistance
 - Weight
 - o Flexibility
 - o Hardness
 - o Toughness
 - \circ Corrosion resistance
 - o Ductility
 - o Machinability
 - Conductivity
 - Thermal
 - Electrical
- Designations
 - o Alloys
 - o Temper
- Physical properties
 - Wear resistance
 - o Weight
 - o Flexibility
 - Hardness
 - o Toughness
 - Corrosion resistance
 - o Ductility
 - o Machinability
 - Conductivity
 - o Thermal
 - o Electrical
- Heat treatment
- Applications

3.

ferrous metals

Describe the characteristics of other non-

Line (GAC): F SELECT MATERIALS

Competency: F4 Describe characteristics of non-metals

Objectives

To be competent in this area, the individual must be able to:

• Describe the characteristics of non-metals.

LEARNING TASKS

CONTENT

1. Describe plastics

- Types
 - Properties
 - Machinability
 - $\circ \quad \text{Thermal expansion} \quad$
 - o Hardness
 - Corrosion resistance
 - Moisture absorption
- Applications

Line (GAC): F SELECT MATERIALS

Competency: F5 Perform heat treating

Objectives

2.

To be competent in this area, the individual must be able to:

• Describe heat treating and surface treatment.

Describe heat treating equipment

LEARNING TASKS

CONTENT

1. Describe surface treatments

- Plating
 - Chrome
 - Gold
 - Nickel
- Brass
- Copper
- Anodizing
- Bluing
- Spray welding
- Oxy-acetylene
- Furnaces
 - Gas
 - Electric
- Induction
- Case hardening
- Through hardening
- Normalizing
- Annealing
- Flame hardening
- Induction hardening
- Tempering
 - Colours

- 3. Describe heat treating

Line (GAC): J USE LATHES

Competency: J2 Describe cutting tools and holders

Objectives

To be competent in this area, the individual must be able to:

• Describe the use of advanced cutting tools.

LEARNING TASKS

CONTENT

- 1. Describe the use of advanced cutting tools
- Materials
 - o Coated carbide
 - o Cermet
 - o Ceramic
 - o CBN
 - o PCD
- Indexable insert numbering system
 - o Shape
 - Dimensions
 - Geometry
- Threading inserts
 - o Lay down
 - Full profile
 - o Stand up
 - General purpose
 - o Multi-pitch

Line (GAC): J USE LATHES

Competency: J5 Cut threads

Objectives

To be competent in this area, the individual must be able to:

- Calculate imperial threads.
- Cut and measure imperial threads.

LEARNING TASKS

1. Describe threads

CONTENT

- Types
 - o Standard
 - Unified
 - Metric
 - Acme
 - Pipe
 - Whitworth
 - API
 - o Non-standard
 - Multiple start
- Theory
 - o Angle
 - o Pitch
 - o Lead
 - Thread form
 - o Lead angle
 - Measurement
 - o Three-wire
 - o Nut
 - Snap gauge
 - o Micrometer
 - o Optical comparator
- Internal
 - Compound offset
 - Compound (90 degrees)
 - Graduation
 - Tapping
 - Metric threads
- External
 - Compound offset
 - Compound (90 degrees)
 - o Graduation

Describe methods of threading

2.

LEARNING TASKS

3. Calculate threads

4. Cut threads

CONTENT

- o Dies
- Tapered (NPT)
- Pitch
- Lead
- Depth of thread
- Angle
- Pitch diameter
- Minor diameter
- Major diameter
- Three-wire
- Inch / metric
- Plan sequence of operation
 - Engagement points (chasing dial)
 - Speed, lead and depth of cut
 - Tool choice
 - Tool alignment
- Set-up sequence
 - Mounting workpiece
 - Truing workpiece
 - Balancing workpiece
 - Centering workpiece
- Roughing
 - Depth of cut
 - Measuring
 - o Material allowance for finishing
- Finishing
 - o Depth of cut
 - Deburring
 - o Measuring
- Measuring
 - Gauge
 - o Micrometer
 - o Three-wire
 - o Optical comparator

Achievement Criteria

Performance Using a lathe, the learner will be able to calculate, cut and measure imperial threads.

Conditions The learner will be given:

- Drawing
- Material
- Tools and equipment
- Measuring tools

Criteria

- The learner will be evaluated on: • Accuracy
 - Tolerances
 - Finish

Line (GAC): K USE MILLING MACHINES

Competency: K1 Describe milling machines

Objectives

To be competent in this area, the individual must be able to:

- Describe milling machine accessories.
- Describe work holding devices.
- Describe milling applications.

LEARNING TASKS

1. Describe milling machine accessories

CONTENT

- Rotary table
- Dividing head
- Vertical milling heads
 - o Plain
 - o Universal

2. Describe work holding devices

- Clamp and hold-downs
- Vises
 - o Plain
 - o Swivel
 - Compound
 - o Shaft
- Dividing heads
 - o Plain
 - o Universal
- Rotary table
- Sine table
- Fixtures
- Angle plates
- V-blocks
- 3. Describe milling machine applications
- Mill
 - o Flat surfaces
 - o Shapes
 - o Keyways
 - o Slots
 - \circ Hole making
 - Counter bore
 - o Counter sink
 - Spot face
 - o Angles
 - o Radii

LEARNING TASKS

CONTENT

- \circ Dovetails
- Gears and racks
- o Helical contours
- \circ Gang milling
- \circ Straddle milling
- Indexing heads
- Rotary tables

Line (GAC): K USE MILLING MACHINES

Competency: K2 Describe cutting tools and holders

Objectives

To be competent in this area, the individual must be able to:

• Describe cutting tools and holders and their applications.

LEARNING TASKS

CONTENT

1. Describe types of cutters

- Horizontal and vertical
 - $\circ \quad \text{Plain milling} \quad$
 - $\circ \quad \text{Side and face} \quad$
 - o Stagger tooth
 - Form cutters
 - o Face mill
 - o End mill
 - o Woodruff
 - o Dovetail
 - o Slitting
 - o Thread cutters
- Flat surfaces
 - Face milling
 - o Plain milling
- Slots / Keyseat
 - End milling
 - Side and face cutting
 - Stagger tooth cutting
 - Woodruff keyseat cutting
- Shapes
 - Gear teeth cutting
 - o Form relief cutting
 - o Splines
 - o T-slots
 - o Dovetails
 - Gang milling
- Drill
 - o Ream
 - o Bore
 - Counter bore
 - \circ Counter sink
 - Spot face

2. Describe cutter applications

LEARNING TASKS

3. Describe tool holding devices

CONTENT

- Arbours
 - Styles A, B and C
- Holders
 - Morse taper
 - Collet
 - $\circ \quad \text{End mill} \quad$
- Boring heads
 - o Plain
 - o Facing

Line (GAC): K USE MILLING MACHINES

Competency: K3 Use dividing heads and rotary tables

Objectives

To be competent in this area, the individual must be able to:

• Use dividing heads and rotary tables.

LEARNING TASKS

CONTENT

1. Describe dividing heads

Use dividing heads

- Construction
 - o Hole plates
 - Chuck
 - o Centre
 - o Foot stock
 - o Head/gear ratio
- Applications
 - o Milling
 - Hexagons
 - Keyways
- Indexing
 - o Direct
 - Simple
 - Angular
 - Differential
- Universal dividing heads
- Plan sequence of operation
- Angular alignment
- Linear alignment
- Determine indexing
 - o Direct
 - o Simple
 - o Angular
- Calculate number of rotations and divisions
- Select circle on hole plate
- Set sector arms

02/19

2.

LEARNING TASKS

3. Describe rotary tables

CONTENT

- Construction
 - o Hole plates
 - o Chuck
 - \circ Head/gear ratio
 - o Angular increments
- Indexing
 - o Direct
 - o Simple
 - o Angular
- Applications
 - o Milling
 - Contours
 - Drilling hole patterns
 - Radii
- Plan sequence of operation
- Workpiece alignment
- Milling spindle alignment
- Cutter offset
- Fixtures

•

- Determine indexing
 - o Direct
 - o Simple
 - o Angular
- Calculate number of rotations and divisions
- Select circle on hole plate
- Set sector arms

Achievement Criteria

Performance Using a milling machine and dividing head, the learner will be able to calculate, cut and produce a hexagon.

- Conditions The learner will be given:
 - Drawing
 - Material
 - Tools and equipment
 - Measuring tools

Criteria The learner will be evaluated on:

- Accuracy
- Tolerances
- Finish

4. Use rotary tables

Line (GAC): K USE MILLING MACHINES

Competency: K4 Operate and maintain milling machines

Objectives

To be competent in this area, the individual must be able to:

• Operate and maintain milling machines.

LEARNING TASKS

CONTENT

- 1. Calculate speeds (RPM) and feeds
- Surface speed
- Diameter of cutter
- Chip load

2. Determine depth of cut

- Rigidity
- Horsepower
- Tooling
- 3. Select work holding device and secure the work
- Work holding devices
 - Clamp and hold-downs
 - o Vises
 - o Dividing heads
 - o Rotary table
 - Sine table
 - Fixtures
 - Angle plates
 - o V-blocks
- Application
 - Cutter
 - \circ Holder

4. Install and remove tooling

LEARNING TASKS

5. Operate milling machines

CONTENT

- Plan sequence of operation
- Align machine
 - Spindle alignment
 - o Table alignment
 - o Accessory alignment
- Set-up sequence
 - Mounting workpiece
 - o Aligning workpiece
- Climb verses conventional
- Roughing
 - o Speeds and feeds
 - o Cutters
 - $\circ \quad \text{Depth of cut} \quad$
 - Measuring
 - o Material allowance for finishing
- Finishing
 - o Speeds and feeds
 - Cutters
 - o Depth of cut
 - o Debur
 - Chamfer
 - Measuring

6. Quality control for component

- First article inspection
- Verify
 - o Material
 - o Drawing
 - Revision
 - \circ Traceability
- Dimensional conformance
- Measuring tools calibrated
- Lubricate
- Clean
- Housekeeping
- Coolant / cutting fluid

7. Maintain milling machines

LEARNING TASKS

- 8. Describe the purpose and usage of cutting fluids with milling machines
- 9. applications

CONTENT

- Lubrication •
- Cooling
- Chip removal •
- Tool life •
- Select types of cutting fluids for specific
- Types .
 - 0 Straight oils
 - Soluble oils 0
 - Semi-synthetic 0
 - Synthetic 0

Achievement Criteria

- Using a milling machine, the learner will be able to machine a block square and bore a hole to Performance specifications.
- Conditions The learner will be given:
 - Drawing •
 - Material •
 - Tools and equipment •
 - Measuring tools •

The learner will be evaluated on: Criteria

- Accuracy •
- Tolerances •
- Finish ٠

Line (GAC): L USE SUPPORT MACHINES

Competency: L3 Operate and maintain hones and lapping machines

Objectives

To be competent in this area, the individual must be able to:

- Operate and maintain hones.
- Describe lapping.

LEARNING TASKS

1. Operate and maintain hones

CONTENT

- Safety precautions
 - Guards
 - Personal protective equipment
 - Housekeeping
- Positioning tool
- Securing workpieces
- Speeds and feeds
- Cleaning
- Lubrication
- Lapping compounds
- Charging
- Cleaning

Achievement Criteria

Performance Using a honing machine, the learner will be able to hone a bore to specifications.

- Conditions The learner will be given:
 - Drawing
 - Material
 - Tools and equipment
 - Measuring tools

Criteria The learner will be evaluated on:

- Accuracy
- Tolerances
- Finish

2. Describe lapping

Line (GAC): M USE PRECISION GRINDERS

Competency: M1 Describe types of precision grinders

Objectives

To be competent in this area, the individual must be able to:

- Describe types of precision surface grinders and their applications.
- Describe tool and cutter grinders.

LEARNING TASKS

CONTENT

1. Describe precision grinders

- Surface
 - Horizontal spindle
 - Purpose
 - Construction
 - Operation
 - o Vertical spindle
 - Purpose
 - Construction
 - Operation
- Tool and cutter
 - o Purpose
 - Construction
 - Operation

Line (GAC): **USE PRECISION GRINDERS** Μ

Competency: M2 Select abrasives

Objectives

3.

To be competent in this area, the individual must be able to:

- Select abrasives and applications. ٠
- Describe the Standard Marking System.

LEARNING TASKS

CONTENT

- 1. Identify abrasives and applications
- Aluminum oxide
- Silicon carbide .
- Cubic boron nitride (CBN) •
- Diamond •
- 2. Describe the Standard Marking System
- Grit Grade •

.

- Structure .
- Bond .
- Thickness
 - Diamond 0
 - CBN 0
- Workpiece material
 - Hardness 0
 - Toughness 0
 - Grindability 0
 - Surface finish requirements •
 - Abrasive characteristics .
 - 0 Friability
 - Machine type •
 - Area of contact
 - Shape

Select abrasives for applications

Line (GAC): M USE PRECISION GRINDERS

Competency: M3 Operate and maintain grinders

Objectives

1.

To be competent in this area, the individual must be able to:

• Operate and maintain surface grinders.

Mount grinding wheel

LEARNING TASKS

- CONTENT
- Ring test
- Balance / truing
- Mounting
- Guard
- 2. Operate and maintain surface grinders
- Workpiece material
 - o Type
 - o Size
- Calculate work speeds and feeds
- Rigidity
- Workholding devices
 - Magnetic chuck
 - o Fixture
 - o Vise
- Set-up sequence
- Roughing and finishing
 - Dressing
 - Depth of cut
 - Step over
- Maintenance
 - Cleaning
 - o Lubricating
 - o Housekeeping
- First article inspection
- Verify
 - o Material
 - Drawing
 - Revision
 - o Traceability
- Dimensional conformance
- Measuring tools calibrated

3. Quality control for component

Achievement Criteria

Performance Using a surface grinder, the learner will be able to grind a block square to specifications.

- Conditions The learner will be given:
 - Drawing
 - Material
 - Tools and equipment

The learner will be evaluated on:

Measuring tools

Criteria

- Accuracy
- Tolerances
- Finish

Line (GAC): N USE CNC MACHINES

Competency: N1 Describe computer numerical control (CNC) turning centres

Objectives

To be competent in this area, the individual must be able to:

• Describe CNC turning centres.

LEARNING TASKS

CONTENT

1. Describe CNC turning centres

- Components
- Controller
- $\circ \quad \ \ {\rm Tool \ changer} \ \ / \ {\rm turret}$
- \circ Chuck / collet
- Spindle
- Principles of operation
 - o Computer control
 - o Axis
- Applications
 - Turning
 - o Drilling
 - Boring
 - Facing
 - Tapers
 - o Knurling
 - Grooving
 - Parting
 - o Threading
 - Internal
 - External
 - Contours

Line (GAC): Ν **USE CNC MACHINES**

Establish co-ordinate systems and apply programming codes for turning **Competency: N2** centres

Objectives

2.

To be competent in this area, the individual must be able to:

Create a manual input program. ٠

LEARNING TASKS

1. Describe co-ordinate systems

CONTENT

- Types
 - Rectangular 0
 - Polar 0
- Machine co-ordinates .
- Work co-ordinates .
- Positioning .
 - Absolute 0
 - Incremental 0
- Absolute
- Incremental
- Codes •
 - 0 G & M
 - Circular interpolation 0
 - Linear interpolation 0
 - Tool nose radius compensation 0
- Auxillary addresses
- Alarms

0

- Canned cycles
 - Rough and finish 0
 - _ Turning
 - _ Facing
 - Threading
 - Grooving 0
 - Drilling 0
- Program format •
 - Sequence of commands 0
 - 0 Order of information
- Workpiece drawing interpretation •
- Material selection
- Machining order of operations •

Describe programming codes

3. Describe program writing procedures

4. Plan a sequence of operation

LEARNING TASKS

5.

CONTENT

- Tooling
- Define datum
- Entry and exit points
- Create manual input program
- Calculate
 - o Program points
 - Speeds and feeds
- Safety blocks
- Programming code use
- Format structure
- Interpret and review

Achievement Criteria

Performance The learner will be able to manually create a program.

- Conditions The learner will be given:
 - Drawing
 - Simulator (preferred)

Criteria The learner will be evaluated on:

- Structure
- Accuracy
- Syntax

Line (GAC): Ν **USE CNC MACHINES**

Competency: N3 Operate and maintain CNC turning centre

Objectives

To be competent in this area, the individual must be able to:

Program, operate and maintain CNC turning centre. ٠

LEARNING TASKS

CONTENT

1. Start-up CNC turning centre

- Start-up procedures
 - Power on 0
 - Home axis 0
 - Warm up 0

Tooling

0

0

•

•

- 2. Set-up tooling
- 3. Set-up the workpiece

Offsets Hydraulic chucks / collet •

Selection

Installation

- Clamping pressure
- Secure work •
- Offsets •

Verify the program 4.

- Graphics simulation •
- Dry run •

LEARNING TASKS

5. Operate CNC turning centre

CONTENT

- Rapid override
- Optional stop on
- Single block
- Monitor machining processes
 - Machine alarms and codes
 - Signs of tool wear (vibration, noise)
 - Overrides (rapid, speed and feed)
 - Chip control problems
 - Cutting fluid delivery
- Cycle interruption
 - Stop procedures
 - Corrective actions
 - o Cycle restart
- Adjust offset parameters
 - o Length
 - o Diameter
 - o Tool nose radius
- Program restart
- First article inspection
- Verify
 - o Material
 - Drawing
 - Revision
 - o Traceability
- Dimensional conformance
 - \circ Measuring tools calibrated

Achievement Criteria

The learner will be able to set up and operate a CNC turning centre to produce a part to Performance specifications. Conditions The learner will be given: Material • Tools and equipment • Drawing • Criteria The learner will be evaluated on: Set up • Safety procedures followed • Accuracy • • Tolerances Finish .

6. Quality control for component

Level 3 Machinist

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C1 Solve problems involving formulas

Objectives

To be competent in this area, the individual must be able to:

• Calculate ratios.

LEARNING TASKS

CONTENT

1. Apply ratios

- Pulley
- Gear
- Mechanical advantage
 - o Levers
 - o Incline plane
 - o Screws

Line (GAC): C USE APPLIED MATHEMATICS

Competency: C5 Solve problems involving trigonometry

Objectives

To be competent in this area, the individual must be able to:

• Apply trigonometry applications.

LEARNING TASKS

CONTENT

1. Use applied trigonometry

- Measurements
 - o Internal/external taper
 - $\circ \quad \operatorname{Pin} \operatorname{in} V$
 - o Dovetails

Line (GAC): D USE MEASURING TOOLS

Competency: D3 Use calipers and gauges

Objectives

To be competent in this area, the individual must be able to:

• Use gauge blocks.

LEARNING TASKS

CONTENT

1. Use gauge blocks

- Care and cleaning
- Calculate combinations
- Wear blocks
- Wringing
- Sine bar

Line (GAC): D USE MEASURING TOOLS

Competency: D4 Use dial indicators and digital readouts

Objectives

To be competent in this area, the individual must be able to:

• Use dial indicators and digital readouts.

LEARNING TASKS

1. Use dial indicators

CONTENT

- True workpiece
 - Grinders
- Workpiece inspection
- Comparing measurements
- Setting up
- Measuring
- Workpiece inspection
- Care and maintenance
- Presets
- Types
 - o Manual
 - Programmable
- Uses
 - o Grinders
 - Surface
 - Cylindrical
- Care and maintenance

2. Use digital readouts

Line (GAC):EINTERPRET DRAWINGS AND REFERENCE MATERIALSCompetency:E4Use Machinery's Handbook and other reference materials

Objectives

To be competent in this area, the individual must be able to:

• Identify and locate information in the Machinery's Handbook.

LEARNING TASKS

CONTENT

•

- 1. Identify information found in the Machinery's Handbook
- 2. Locate information in the Machinery's Handbook
- 3. Use other reference materials

- Types o Heat treatment
 - Helical milling
- Formulas
- Speeds and feeds
- Heat treatment
- Job plan
- Quality control documentation
 - Inspection sheets
 - o Blueprints

Line (GAC): F SELECT MATERIALS

Competency: F5 Perform heat treating

Objectives

2.

To be competent in this area, the individual must be able to:

• Perform heat treating and oxy-acetylene processes.

LEARNING TASKS

CONTENT

1. Perform heat treating processes

Perform oxy-acetylene processes

- Normalizing
- Annealing
- Flame hardening
- Induction hardening
- Tempering
- Safety
- System set-up
- Torch operation
 - Heating
 - \circ Heat treating

Achievement Criteria

Performance The learner will be able to harden and temper a workpiece to specifications.

- Conditions The learner will be given:
 - Specifications
 - Tools and equipment
 - Workpiece

Criteria

- The learner will be evaluated on:
 - Rockwell hardness

Line (GAC): F SELECT MATERIALS

Competency: F6 Perform materials testing

Objectives

2.

3.

To be competent in this area, the individual must be able to:

- Describe the physical properties and characteristics of steel.
- Perform hardness testing.

LEARNING TASKS

CONTENT

1. Describe the physical properties and characteristics of steel

Describe non-destructive testing

- Hardness
- Tensile strength
- Shear strength
- Describe destructive testing methods
- Hardness
- Tensile
- Impact
- Dye penetrant tests
 - Magnetic particle inpection
 - Ultrasound
 - X-ray

4. Perform hardness tests

Rockwell

Achievement Criteria

- Performance Using a Rockwell hardness tester, the learner will be able to measure the hardness of a heat-treated workpiece.
- Conditions The learner will be given:
 - Tools and equipment
 - Workpiece

Criteria The learner will be evaluated on:

• Correct use of equipment

Line (GAC): G REFURBISH COMPONENTS

Competency: G3 Describe bearings, seals and bearing materials

Objectives

To be competent in this area, the individual must be able to:

• Describe bearings, seals and bearing materials.

LEARNING TASKS

1. Describe bearings

CONTENT

- Types of bearings
 - o Friction
 - o Anti-friction
- Principles of operation
 - Sliding
 - Rolling
- Types of loads
 - o Radial
 - o Thrust
 - Combination

2. Describe friction bearings

Describe friction bearing materials

Describe anti-friction bearings

- Types
 - \circ Bushing
 - Sleeve
 - o Split
- Housing styles
 - o Flange
 - o Pillow block
- - TypesApplications
 - Construction
 - o Rolling elements
 - Ball
 - Roller
 - Spherical
 - Cylindrical
 - Tapered roller
 - Bearing codes
 - Types
 - Applications

5. Describe types of seals

3.

4.

Line (GAC): J USE LATHES

Competency: J5 Cut threads

Objectives

To be competent in this area, the individual must be able to:

• Use gear ratio applications on lathes.

LEARNING TASKS

CONTENT

- 1. Describe advanced thread cutting
- Introduction to Acme
- Stub Acme
- Square thread
- Modified square thread
- Tapered (NPT)
- Change back gears for feeds and threads
- Calculate gear ratios

Achievement Criteria

2.

Performance Using a lathe, the learner will be able to calculate, cut and measure metric threads.

Conditions The learner will be given:

• Drawing

Use gear ratio applications on lathes

- Material
- Tools and equipment
- Measuring tools
- Criteria The learner will be evaluated on:
 - Accuracy
 - Tolerances
 - Finish

Line (GAC): J USE LATHES

Competency: J6 Describe vertical lathes

Objectives

To be competent in this area, the individual must be able to:

• Describe vertical lathes.

LEARNING TASKS

CONTENT

1. Describe vertical lathes

- Types
- o Mill
 - o Turret lathe
- Components
 - o Mill
 - Chuck / table
 - Ram
 - Bridge
 - Column
 - Cross rail
 - o Turret lathe
 - Chuck / table
 - Ram slide
 - Bridge
 - Column rail
 - Turret
- Accessories
 - o Jaws
 - o Clamps
- Operations
 - Boring
 - o Turning
 - o Taper
 - Facing
 - o Drilling

Line (GAC): K USE MILLING MACHINES

Competency: K3 Use dividing heads and rotary tables

Objectives

To be competent in this area, the individual must be able to:

• Apply advanced applications using a dividing head.

LEARNING TASKS

CONTENT

- 1. Describe the advanced use of dividing heads
- Applications
 - \circ Milling
 - Splines / serrations
 - Helical milling
- 2. Apply advanced applications for using a dividing head
- Mill
 - o Splines / serrations
 - Helical milling

Achievement Criteria

Performance Using a milling machine and dividing head, the learner will be able to calculate, cut and measure splines and a helical groove.

Conditions The learner will be given:

- Drawing
- Material
- Tools and equipment
- Measuring tools
- Criteria The learner will be evaluated on:
 - Accuracy
 - Tolerances
 - Finish

Line (GAC): K USE MILLING MACHINES

Competency: K4 Operate and maintain milling machines

Objectives

1.

To be competent in this area, the individual must be able to:

• Operate milling machines.

LEARNING TASKS

Operate milling machines

CONTENT

- Plan sequence of operation
- Operations
 - o Mill
 - Radii
 - Dovetails
 - Helical contours
 - Splines / serrations

Achievement Criteria

Performance Using a milling machine, the learner will be able to machine radii and dovetails.

- Conditions The learner will be given:
 - Drawing
 - Material
 - Tools and equipment
 - Measuring tools
- Criteria The learner will be evaluated on:
 - Accuracy
 - Tolerances
 - Finish

Line (GAC): K USE MILLING MACHINES

Competency: K5 Describe boring mills

Objectives

To be competent in this area, the individual must be able to:

• Describe horizontal boring mills.

LEARNING TASKS

CONTENT

1. Describe horizontal boring mills

- Types
 - o Table
 - Saddle
 - o Planer
- Components
 - o Bed
 - o Saddle
 - o Table
 - Fixed
 - Rotary
 - o Columns
 - o Tool heads
 - Facing slides
 - o Spindles
 - Outboard support
- Accessories
 - o Boring heads
 - Star wheel feed attachment
 - Measuring devices
 - o Optics
 - Digital readouts
 - o Line boring attachment
- Operations
 - o Drilling
 - o Boring
 - Line boring
 - Facing
 - o Milling
 - Threading
- Layout of castings
- Layout of fabrication
- Work holding devices

Line (GAC): M USE PRECISION GRINDERS

Competency: M1 Describe types of precision grinders

Objectives

To be competent in this area, the individual must be able to:

• Describe precision grinders and their applications.

LEARNING TASKS

CONTENT

1. Describe grinders

- Centreless
 - o Purpose
 - Construction
 - Operation
- Cylindrical
 - o Internal
 - Purpose
 - Construction
 - Operation
 - o External
 - Purpose
 - Construction
 - Operation

Line (GAC): M USE PRECISION GRINDERS

Competency: M3 Operate and maintain grinders

Objectives

To be competent in this area, the individual must be able to:

• Operate and maintain cylindrical grinders.

LEARNING TASKS

CONTENT

- 1. Operate and maintain cylindrical grinders
- Workpiece material
 - o Type
 - o Size
- Calculate work speeds and feeds
- Wheel
 - Selection
 - o Balancing
 - Truing and dressing
- Rigidity

0

- Work holding devices
 - Chucks, faceplates, collets
 - Between centres
 - Drive dog
 - Steady rest/follower rest
- Set-up sequence
 - Mounting workpiece
 - Truing workpiece
- Roughing and finishing
 - o Dressing
 - Depth of cut
 - o Traverse speed
- Maintenance
 - Cleaning
 - o Lubricating
 - Housekeeping

Achievement Criteria

Performance Using a cylindrical grinder, the learner will be able to grind an external cylindrical feature to specifications.

Conditions The learner will be given:

- Drawing
- Material
- Tools and equipment
- Measuring tools

Criteria

- The learner will be evaluated on: • Accuracy
 - Tolerances
 - Finish

Line (GAC): N USE CNC MACHINES

Competency:

N4 Describe computer numerical control (CNC) machining centres

Objectives

To be competent in this area, the individual must be able to:

• Describe CNC machining centres.

LEARNING TASKS

CONTENT

•

- 1. Describe CNC machining centres
- Components
 - Controller
 - o Tool changer
 - o Table
 - \circ Spindle
- Principles of operation
 - o Computer control
 - o Axis
- Applications
 - o Facing
 - o Drilling
 - \circ Boring
 - Tapping
 - Profiling
 - Engraving

Line (GAC): N USE CNC MACHINES

Competency: N5 Establish co-ordinate systems and apply programming codes for machining centres

Objectives

To be competent in this area, the individual must be able to:

• Create a manual input program.

LEARNING TASKS

1. Describe co-ordinate systems

CONTENT

- Types
 - o Rectangular
 - o Polar
- Machine co-ordinates
- Work co-ordinates
- Positioning
 - Absolute
 - o Incremental
- Absolute
- Incremental
- Codes
 - G&M
 - Circular interpolation
 - o Linear interpolation
 - Cutter radius compensation
- Auxillary addresses
- Alarms
- Canned cycles
 - o Drilling
 - Tapping
 - Boring
- ocedures Program format
 - Sequence of commands
 - \circ Order of information
 - Workpiece drawing interpretation
 - Material selection
 - Machining order of operations
 - Tooling
 - Define datum
 - Entry and exit points

2. Describe programming codes

- 3. Describe program writing procedures
- 4. Plan a sequence of operation

LEARNING TASKS

5. Create manual input program

CONTENT

- Calculate
 - Program points
 - o Speeds and feeds
- Safety blocks
- Programming code use
- Format structure
- Interpret and review

Achievement Criteria

Performance The learner will be able to manually create a program.

- Conditions The learner will be given:
 - Drawing
 - Simulator (preferred)
- Criteria The learner will be evaluated on:
 - Structure
 - Accuracy
 - Syntax

Line (GAC): N USE CNC MACHINES

Competency: N6 Operate and maintain CNC machining centres

Objectives

To be competent in this area, the individual must be able to:

• Program, operate and maintain a CNC machining centre.

LEARNING TASKS

CONTENT

1. Start-up CNC machining centre

- Start-up procedures
 - Power on
 - Home axis
 - o Warm up

Selection

Installation

- 2. Set-up tooling
- 3. Set-up the workpiece

• Vises

0

InsOffsets

Tombstones

Tooling

•

•

- Fixtures
- Secure work
- Offsets

4. Verify the program

- Graphics simulation
- Dry run

LEARNING TASKS

5. Operate CNC machining centre

Quality control for component

CONTENT

- Rapid override
- Optional stop on
- Single block
- Monitor machining processes
 - o Machine alarms and codes
 - Signs of tool wear (vibration, noise)
 - Overrides (rapid, speed and feed)
 - Chip control problems
 - Cutting fluid delivery
- Cycle interruption
 - Stop procedures
 - Corrective actions
 - Cycle restart
- Adjust work offset parameters
- Adjust tool offset parameters
 - o Length
 - o Radius (diameter)
- Program restart
- First article inspection
- Verify
 - Material
 - Drawing
 - Revision
 - o Traceability
- Dimensional conformance
- Measuring tools calibrated

Achievement Criteria

6.

Performance	The learner will be able to set up and operate a CNC machining centre to produce a part to specifications.
Conditions	 The learner will be given: Material Tools and equipment Drawing
Criteria	The learner will be evaluated on: Set up Safety procedures followed Accuracy Tolerances Finish

Line (GAC): N USE CNC MACHINES

Competency: N7 Create 2D and 3D Models

Objectives

To be competent in this area, the individual must be able to:

• Describe 2D and 3D models.

LEARNING TASKS

CONTENT

1. Describe 2D and 3D models

- CAD software
- Complex shapes

Line (GAC): N USE CNC MACHINES

Competency: N8 Program using CAM

Objectives

To be competent in this area, the individual must be able to:

• Describe CAM.

LEARNING TASKS

CONTENT

1. Describe CAM

- CAM software
- Generating code

Level 4 Machinist

Line (GAC): A PERFORM SAFETY RELATED TASKS

Competency A3 Apply safety practices for shop areas

Objectives

To be competent in this area, the individual must be able to:

• Describe mentoring techniques.

LEARNING TASKS

1. Describe characteristics of being a journeyperson / mentor

CONTENT

- Listening skills
- Supportive
- Guidance
 - Positive reinforcement
 - o Discipline / constructive criticism
- Patience
- Leadership
- Share
 - Experiences
 - o Knowledge
- Pride in trade

Line (GAC):EINTERPRET DRAWINGS AND REFERENCE MATERIALSCompetency:E4Use Machinery's Handbook and other reference materials

Objectives

To be competent in this area, the individual must be able to:

• Locate information in the Machinery's Handbook and other reference materials.

LEARNING TASKS

CONTENT

- 1. Locate information in the Machinery's Handbook
- Formulas
- Splines
- Cams
- Gears

2. Use other reference materials

- Job plan
 - Machine limitations
- Quality Control Documentation
 - Inspection sheets
 - Blueprints

Line (GAC): L USE SUPPORT MACHINES

Competency: L4 Operate and maintain gear cutting machines

Objectives

2.

To be competent in this area, the individual must be able to:

• Operate and maintain gear cutting machines.

LEARNING TASKS

CONTENT

1. Describe gear cutting machines

- Types
 - Gear hobbing
 - Gear shaper
- Purpose
- Construction
- Applications
- Operate and maintain gear cutting machines
- Guards
- Personal protective equipment
- Housekeeping

Safety precautions

- Positioning and securing workpiece
- Coolant
- Cutters
- Cleaning
- Lubrication

Achievement Criteria

Performance The learner will be able to set up and operate a gear cutting machine to produce a part to specifications.

- Conditions The learner will be given:
 - Material
 - Tools and equipment
 - Drawing
- Criteria The learner will be evaluated on:
 - Accuracy
 - Tolerances
 - Finish

Line (GAC): L USE SUPPORT MACHINES

Competency: L5 Operate and maintain electrical discharge machines

Objectives

To be competent in this area, the individual must be able to:

• Operate and maintain electric discharge machines.

LEARNING TASKS

CONTENT

- 1. Describe electrical discharge machines
- Types
 - o Ram
 - o Wire
- Purpose
- Construction
- Applications
- Safety precautions
 - Personal protective equipment
 - Housekeeping
- Positioning and securing workpiece
- Mounting and aligning electrode
- Surface finish
- Spark gap
- Electrode size
- Control setting
- Flushing
- Cleaning

2. Operate and maintain electrical discharge machines

Line (GAC): N USE CNC MACHINES

Competency: N7 Create 2D and 3D models

Objectives

To be competent in this area, the individual must be able to:

• Create 2D and 3D models

LEARNING TASKS

1. Describe interface

CONTENT

Menus

- 2. Establish co-ordinate system
- 3. Create geometry

Edit geometry

- Toolbars
- Planes
- Datum
- Points
- Lines
- Circles
- Arcs
- Trim
 - Extend
 - Delete

Inch / metric

Extrude Revolve

Formats

• Copy

•

•

- 5. Geometry dimensioning
- 6. Create solid
- 7. Save file

4.

Achievement Criteria

Performance The learner will be able to create a 2D and a 3D model using software.

- Conditions The learner will be given:
 - Drawing
- Criteria The learner will be evaluated on:
 - Completion in time allotted
 - Accuracy

Line (GAC): N USE CNC MACHINES

Competency: N8 Program using CAM

Objectives

To be competent in this area, the individual must be able to:

• Generate a tool paths using CAM software.

LEARNING TASKS

1. Describe interface

- CONTENT
- Menus
- Toolbars

- 2. Import geometry
- 3. Select machine
- 4. Plan sequence of operations
- 5. Determine tooling
- 6. Select machining operations
- 7. Create tool path
- 8. Verify program
- 9. Create G-code
- 10. Save program

- Edit
- Establish origin
- Lathe
- Mill
- Machining sequence
- Select
- Define
- According to planned sequence
- Select
 - Geometry
 - o Tool
 - o Parameters
- Backplot
- Verify
- Render
- Post-processor selection
- Code verification
- Format

HARMONIZED PROGRAM OUTLINE Program Content Level 4

Achievement Criteria

Performance The learner will be able to create tool paths and generate a G-code program using software.

- Conditions The learner will be given:
 - Drawing
- Criteria The learner will be evaluated on:
 - Completion in time allotted
 - Accuracy
 - Functional program using a simulator

Section 4 ASSESSMENT GUIDELINES

Assessment Guidelines – Level 1

Assessment Guidelines are the percentage weight of theory and practical assessment in technical training

PROGR IN-SCH	AM: OOL TRAINING:	MACHINIST LEVEL 1			
LINE	SUBJECT	COMPETENCIES		THEORY WEIGHTING	PRACTICAL WEIGHTING
А	PERFORM SAFETY RELATI	ED TASKS		15%	0%
В	PERFORM HAND PROCES	SES		10%	20%
С	USE APPLIED MATHEMAT	ICS		10%	0%
D	USE MEASURING TOOLS			10%	0%
Е	INTERPRET DRAWINGS A	ND REFERENCE MATERIALS		8%	20%
F	SELECT MATERIALS			8%	0%
G	REFURBISH COMPONENT	S		5%	0%
Н	USE DRILLING MACHINES	3		8%	20%
Ι	USE POWER SAWS			6%	0%
J	USE LATHES			10%	30%
K	USE MILLING MACHINES			2%	0%
L	USE SUPPORT MACHINES			8%	10%
		Т	'otal	100%	100%
In-school theory / practical subject competency weighting			60%	40%	
Final in-school mark			IN-SCH	IOOL %	

In-school Mark Combined theory and practical subject competency multiplied by80%	
Standard Level Exam (SLE) Mark20%The exam score is multiplied by20%	
Final Level Mark	FINAL%

Assessment Guidelines – Level 2

Level 2 Grading Sheet: Subject Competency and Weightings

PROGR IN-SCH	AM: OOL TRAINING:	MACHINIST LEVEL 2		
LINE	SUBJECT	COMPETENCIES	THEORY WEIGHTING	PRACTICAL WEIGHTING
С	USE APPLIED MATHEMAT	ICS	11%	0%
D	USE MEASURING TOOLS		5%	0%
Е	INTERPRET DRAWINGS AN	ID REFERENCE MATERIALS	5%	0%
F	SELECT MATERIALS		10%	0%
J	USE LATHES		15%	20%
K	USE MILLING MACHINES		15%	20%
L	USE SUPPORT MACHINES		4%	15%
М	USE PRECISION GRINDERS		10%	20%
Ν	USE CNC MACHINES		25%	25%
		Tot	al 100%	100%
In-scho	In-school theory / practical subject competency weighting		60%	40%
Final in-school mark		IN-SC	CHOOL %	

In-school Mark Combined theory and practical subject competency multiplied by	80%
Standard Level Exam (SLE) Mark The exam score is multiplied by20%	
Final Level Mark	FINAL%

Assessment Guidelines - Level 3

Level 3 Grading Sheet: Subject Competency and Weightings

PROGR IN-SCH	AM: OOL TRAINING:	MACHINIST LEVEL 3			
LINE	SUBJECT	COMPETENCIES	,	THEORY WEIGHTING	PRACTICAL WEIGHTING
С	USE APPLIED MATHEMATI	CS		7%	0%
D	USE MEASURING TOOLS			5%	0%
Е	INTERPRET DRAWINGS AN	ID REFERENCE MATERIALS		5%	0%
F	SELECT MATERIALS			5%	10%
G	REFURBISH COMPONENTS	5		3%	0%
J	USE LATHES			10%	10%
K	USE MILLING MACHINES			20%	25%
М	USE PRECISION GRINDERS	3		15%	15%
N	USE CNC MACHINES			30%	40%
		Το	al	100%	100%
In-scho	In-school theory / practical subject competency weighting			60%	40%
Final in-school mark			IN-SCH	HOOL %	

n-school Mark Combined theory and practical subject competency multiplied by	
Standard Level Exam (SLE) Mark20%The exam score is multiplied by20%	
Final Level Mark	FINAL%

Assessment Guidelines - Level 4

Level 4 Grading Sheet: Subject Competency and Weightings

PROGRAM: IN-SCHOOL TRAINING:		MACHINIST LEVEL 4 / FINAL LEVEL		
LINE	SUBJECT COMPETENCIES		THEORY WEIGHTING	PRACTICAL WEIGHTING
А	PERFORM SAFETY RELATED TASKS		5%	0%
Е	INTERPRET DRAWINGS AND REFERENCE MATERIALS		20%	0%
L	USE SUPPORT MACHINES		25%	40%
Ν	USE CNC MACHINES		50%	60%
	Total		100%	100%
In-school theory / practical subject competency weighting		60%	40%	

Final in-school Mark	
Apprentices must achieve a minimum 70% as the final in-school percentage score to be eligible to write the Interprovincial Red Seal or SkilledTradesBC CofQ exam.	IN-SCHOOL %

All apprentices who complete Level 4 of the Machinist program with a FINAL level percentage score of 70% or greater will write the Interprovincial Red Seal examination as their final assessment.

SkilledTradesBC will enter the apprentices' Machinist Interprovincial Red Seal examination percentage score in SkilledTradesBC Portal.

A minimum percentage score of 70% on the examination is required for a pass.

Section 5 TRAINING PROVIDER STANDARDS

Facility Requirements

Classroom Area

- 900 sq. ft. for a class size of 12 16 students, with moveable tables and chairs
- Instructional media to include multimedia projector, projection screen, DVD player, and whiteboard

Shop Area

- 175 sq. ft. per student
- Well heated and ventilated
- 22 ft. high ceilings
- Lighting appropriate to detailed work
- 200 sq. ft. clean-up / waste area

Lab Requirements

• See Shop Area

Student Facilities

- 20 sq. ft. per student for tools storage (indoors)
- Student locker and changeroom facilities

Instructor's Office Space

• 150 sq. ft. per instructor, with a desk, chairs and materials storage / filing system

Other

• 200 sq. ft. raw materials storage (may be outdoors)

Tools and Equipment

Shop Equipment

Required

- Band saw (horizontal and vertical)
- Computer numeric control (CNC) simulator
- Drilling machines
- Grinders (cylindrical, surface, pedestal)
- Hydraulic press
- Indexing heads
- Lathe (engine, CNC)
- Milling machines (vertical, horizontal Milling centres, CNC)

Recommended

- Hobbing machine
- Key seater
- Abrasive cut-off saw
- Boring machines (horizontal and vertical)

(EDM)

Electrical discharge machine

- Grinders (tool and cutter, tool post profile)
 - Milling machines (universal)

Shop (Facility) Tools

Standard Tools

- Abrasive cut off wheels
- Air grinder
- Air-driven hand tools
- Boring bars
- Boring heads
- Broaches
- Carbides (brazed, inserts, solid)
- Changeable pilot counterbores
- Circular saw
- Dies
- Disc grinder
- Drills (centre, spade, twist drill, oil hole, straight, fluid gun drills, hard steel drill, anular cutters, step drill, saw type hole cutter)

- Grinding wheels (aluminum oxide, silicon, carbide, boron carbide, cubicboron nitride, diamond, buffing wheels)
- Knurling tools (straight, tangential, diamond)
- Milling cutters (dovetail, gear, keyway, end mill Tslot, woodruff, side and face, chamfer, slitting saws, flycutters, formed, angle face, cemented carbide, carbide insert, solid carbide
- Reamers (machine, hand, spiral flute, straight, flute, expandable, rose, taper)
- Spotfacers
- Taps
- Portable key seater
- Cold saw
- Disk grinder

SKILLED TRADES^{BC}

HARMONIZED PROGRAM OUTLINE Training Provider Standards Section 5

Hand Tools

- Acetylene torch
- Allen keys
- Arbor press
- Bearing extractor
- Brushes
- Buffing wheels
- Chisels
- Chuck key
- Clamps
- Cloths
- Deburrers
- Die stock
- Drill drift

Measuring and Layout Tools

- Angle plate
- Bore gauge
- Combination square
- Coordinate measuring machine (cmm)
- Depth gauge
- Dial indicators and magnetic base
- Digital readout
- Dividers
- Drill gauge
- Electronic measuring devices
- Etchers
- Feeler gauge
- Gauge blocks
- Gauge pins
- Gear measuring wire

- Drill gauge
- Dressing stick
- Emery cloth
- File cards
- File handles
- Files

•

- Grease guns
- Hacksaws and blades
 - Hand broaches
- Hand reamers
- Hammers/mallets
- Honing stones
- Lapping plate
- Go-no-go gauge (threads, diametrical)
- Height gauge
- Hermaphrodite calipers
- Inside calipers
- Layout dye
- Measuring rods
- Measuring tape
- Optical comparator
- Outside calipers
- Plug/ring gauge
- Precision blocks
- Precision level
- Protractor (universal, bevel, Vernier)
- Punches (centre, prick, transfer)

- Oil cans/guns
- Pliers
- Scrapers (flat, bearing)
- Screwdrivers
- Socket wrenches
- Soft jaws
- Tap extractors
- Tap wrenches
- Torch tip lighters
- Vises
- Wheel dressers (hand held)
- Wrenches
- Radius gauge
- Scale (steel, rule, hook rule)
- Scribers
- Sine bar
- Sine plate
- Small hole gauge
- Snap gauge
- Square (solid, adjustable, cylindrical)
- Surface finish comparator
- Surface gauge
- Surface plate
- Telescopic gauge
- Three wire set
- Transfer caliper
- Vernier caliper (dial, digital)

SKILLED TRADES^{BC}

HARMONIZED PROGRAM OUTLINE Training Provider Standards Section 5

Set Up Accessories

- Adaptors
- Angle plates
- Arbors
- Centre and edge finders
- Centres (dead, half, rotating, spring)
- Chucks (3-jaw, 4-jaw, 6-jaw, magnetic, tail stock)
- Colletts
- Crane
- Degreasing tanks
- Dividing head

Safety Equipment

- Eye wash station
- Face shield
- Required fire suppression equipment

Specialty Tools

Software

• CAD/CAM software

Student Equipment (supplied by school)

Required

- Dust mask
- Hearing protectors

Student Tools (supplied by student)

Required

- Safety boots
- Safety glasses

Recommended

- Personal protective equipment (as determined by WorkSafeBC)
- Personal hearing protection

- Drill chuck
- Face plates
- Follower/travelling rest
- Grinding attachments
- Hoists
- Lathe dogs
- Machine vise
- Mandrels
- Parallels
- Quick change toolpost
- Rotary table

- Shim stock
- Slings
- Spacers
- Steady rest
- Taper sleeve
- Taper turning attachment
- Tapping head
- Tool holders
- Turret toolpost
- Vee block
- Wheel balancers
- Required first aid coverage and equipment
- Safety barrier tapes

Reference Materials

Required Reference Materials

- Individualized Learning Machinist Modules from Alberta Learning.
 - BC Level 1 and 2 package
- WorkSafe BC Regulations Online
- Technology of Machine Tools and Workbook
- Machinery's Handbook
- Haas Programming Manual
- Haas Operator Manual

Recommended Resources

- Interpret Engineering Drawings (Canadian Edition)
- SKF Bearing Maintenance Handbook by the SKF Bearing Corporation
- Mathematics for Machine Technology, Smith
- Engineer's Black Book: Machinist and Manufacturing Reference Guide, Pat Rapp

Suggested Texts

- IPT Trade Handbooks Series
- Machine Tool Practices

Instructor Requirements

Occupation Qualification

The instructor must possess:

• Machinist Red Seal certification

Work Experience

A minimum of 10 years' experience working in the industry as a journeyperson.

Instructional Experience and Education

It is preferred that the instructor also possesses one of the following:

- Provincial (BC) Instructor Diploma or completion of a similar Trainer Training/Instructional Methods program, plus
- 2 years of supervisory or administrative experience
- Experienced user of CAD/CAM software

Appendices

HARMONIZED PROGRAM OUTLINE Appendix A

Appendix A Acronyms

AED	Automated external defibrillator
AISI	American Iron and Steel Institute
ANSI	American National Standards Institute
API	American Petroleum Institute
ASME	American Society of Mechanical Engineers
BSP	British standard pipe
CAD	Computer-aided design
CAM	Computer- aided manufacturing
CBN	Cubic boron nitride
CMM	Coordinate measuring machine
CNC	Computer numerical control
EDM	Electrical discharge machines
FPM	Feet per minute
HSS	High speed steel
IPM	Inches per minute
ISO	International Standards Organization
MPM	Metres per minute
MTR	Material test report
NDT	Non-destructive testing
NPS	National Pipe Straight
NPT	National Pipe Taper
PLC	Programmable logic controller
PPE	Personal protective equipment
RPM	Revolutions per minute
SAE	Society of Automotive Engineers
SDS	Safety data sheets
SFPM	Surface feet per minute
SMPM	Surface metres per minute
UN	Unified National
UNC	Unified National Course (a thread system for course threads)
UNF	Unified National Fine (a thread system for fine threads)
UNS	Unified National Special
WHMIS	Workplace Hazardous Materials Information System

Appendix B Previous Contributors

Subject Matter Experts retained to assist in the development of the 2014 Program Outline:

- James Cai
 BC Institute of Technology
- Ron Metcalfe Murrey Latta Progressive Machine
- David Peare Patton and Cooke
- Dave Sanford Howe Sound Pulp and Paper (retired)
- Daniel Smith Howe Sound Pulp and Paper

The Program Outline was prepared with the advice and direction of an industry steering committee convened initially by the RTO (Resource Training Organization). Members include:

- Steve Anderson Department of National Defense
- Danny Bradford BC Federation of Labour
- Larry Dosalph Teck
- Ralph Finch Thompson Rivers University
- Dana Goedbloed Kwantlen Polytechnic University
- Wayne Muzylowski West Fraser (Eurocan Pulp and Paper)
- James Piwek
 Teck
- Brad Smith Catalyst Paper
- Cindy Soderstom
 CAODC (Rig Tech Trade)
- Gene Von Matt
 Elk Valley Coal
- Wayne Wetmore Enform Training
- Trevor Williams
 BC Institute of Technology

Subject Matter Experts retained to assist in the development of 2008 Program Outline:

• Dave Baker Kodak Graphic Communication **James** Cai BC Institute of Technology Tim Duthie Elk Valley Coal Corp Paul Ghotra CIMtech Mfg Inc Alastair Haythornthwaite International Association of Machinists DL 250 ٠ Uwe zum Hingst Zum Hingst Technologies Inc. • • John MacKinnon Avcorp Industries Inc. Gary Markham Raute Wood Ltd. • Dave Sanford Howe Sound Pulp and Paper • **Richard Turnbull** Department of National Defense . Tim Walls **Pazmac Enterprises** . Guy Walton Kodak Graphic Communication **Reinhard Wildauer** College of New Caledonia