SKILLEDTRADES^{BC}

PROGRAM OUTLINE

Instrumentation and Control Technician

The latest version of this document is available in PDF format on the SkilledTradesBC website www.skilledtradesbc.ca

To order printed copies of Program Outlines or learning resources (where available) for BC trades contact:

Crown Publications, Queen's Printer Web: www.crownpub.bc.ca Email: crownpub@gov.bc.ca Toll Free 1 800 663-6105

Copyright © 2020 SkilledTradesBC

This publication may not be modified in any way without permission of SkilledTradesBC

1

INSTRUMENTATION AND CONTROL TECHNICIAN PROGRAM OUTLINE

APPROVED BY INDUSTRY
MAY 2020

BASED ON RSOS 2020

Developed by SkilledTradesBC Province of British Columbia

TABLE OF CONTENTS

Section 1 INTRODUCTION	3
Foreword	4
Acknowledgements	
How to Use this Document	
Section 2 PROGRAM OVERVIEW	8
Program Credentialing Model	9
Occupational Analysis Chart	10
Training Topics and Suggested Time Allocation - Level 1	13
Training Topics and Suggested Time Allocation – Level 2	
Training Topics and Suggested Time Allocation - Level 3	
Training Topics and Suggested Time Allocation - Level 4	
Section 3 PROGRAM CONTENT	18
Level 1 Instrumentation and Control Technician	19
Level 2 Instrumentation and Control Technician	60
Level 3 Instrumentation and Control Technician	86
Level 4 Instrumentation and Control Technician	112
Section 4 ASSESSEMENT GUIDELINES	137
Assessment Guidelines - Level 1	138
Assessment Guidelines - Level 2	139
Assessment Guidelines - Level 3	
Assessment Guidelines - Level 4	141
Section 5 TRAINING PROVIDER STANDARDS	142
Facility Requirements	143
Tools and Equipment	145
Reference Materials	147
Instructor Requirements	152
Appendices	153
Appendix A Acronyms	154
Appendix B Glossary	
Appendix C Previous Contributors	

Section 1 INTRODUCTION

Instrumentation and Control Technician

Foreword

This Program Outline is for use in the Instrumentation and Control Technician apprenticeship training classes as sponsored by SkilledTradesBC and will be used as a curriculum planning guide for instructors in the formal classroom portions of apprenticeship training.

Practical demonstration and student participation should always be integrated with classroom sessions.

Safe working practices, though not always specified in each of the competencies and learning tasks, are an implied part of the program and should be stressed throughout the apprenticeship.

The technical training times calculated by the Industry Subject Matter Experts are based on six hours of instructional time ("student contact time") per day.

This Program Outline includes a list of recommended reference textbooks that are available to support the learning objectives and the minimum shop requirements needed to support instruction. Appendix C of this document contains a sample lab assessment tool which is intended to assist new instructors in creating lab assessment instruments.

School-based training for this trade does **NOT** include practical safety certification (rigging, fall protection, confined space entry, etc.). Apprentices will examine the purpose and intent of work safety documents and regulations and know how to find this information. It is the responsibility of employers to train apprentices in on-the-job safety practices and procedures (as per BC Occupational Health and Safety Regulations and Employers' Company Safety Policies).

SAFETY ADVISORY

Be advised that references to the WorkSafe BC safety regulations contained within these materials do not/may not reflect the most recent Occupational Health and Safety Regulation (the current Standards and Regulation in BC can be obtained on the following website: http://www.worksafebc.com). Please note that it is always the responsibility of any person using these materials to inform him/herself about the Occupational Health and Safety Regulation pertaining to his/her work.

Acknowledgements

In 2019/2020, Subject Matter Experts were convened to review the BC Program Outline with respect to the Pan-Canadian Harmonization Initiative changes. The following are the Subject Matter Experts who participated in this review:

Aron Reid, Howe Sound Pulp and Paper Corportation

• Shane Stirling, Epscan

Leo Paradis, Catalyst Paper

Jim Armstrong, BC Institute of Technology
 Charles Maxwell, BC Institute of Technology

Facilitators:

• Angela Caughy, SkilledTradesBC

SkilledTradesBC would like to acknowledge the dedication and hard work of all the industry representatives appointed to identify the training requirements of the Instrumentation and Control Technician occupation.

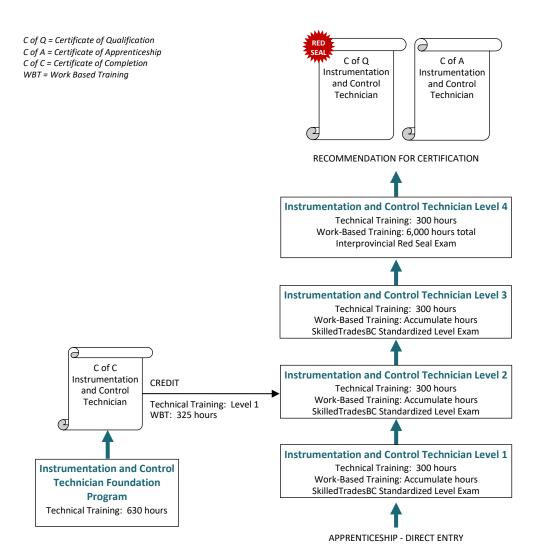
How to Use this Document

This Program Outline has been developed for the use of individuals from several different audiences. The table below describes how each section can be used by each intended audience.

Section	Training Providers	Employers/ Sponsors	Apprentices	Challengers
Program Credentialing Model	Communicates program length and structure, and all pathways to completion	Illustrates the length and structure of the program	Illustrates the length and structure of the program, and pathway to completion	Illustrates the challenger pathway to Certificate of Qualification
OAC	Communicates the competencies that industry has defined as representing the scope of the occupation	Displays the competencies that an apprentice is expected to demonstrate in order to achieve certification	Displays the competencies apprentices will achieve as a result of program completion	Displays the competencies challengers must demonstrate in order to challenge the program
Training Topics and Suggested Time Allocation	Shows proportionate representation of general areas of competency (GACs) at each program level, the suggested proportion of time spent on each GAC, and percentage of time spent on theory versus practical application	Shows the scope of competencies covered in the technical training, the suggested proportion of time spent on each GAC, and the percentage of that time spent on theory versus practical application	Shows the scope of competencies covered in the technical training, the suggested proportion of time spent on each GAC, and the percentage of that time spent on theory versus practical application	Shows the relative weightings of various competencies of the occupation on which assessment is based
Program Content	Defines the objectives, learning tasks, high level content that must be covered for each competency, as well as defining observable, measurable achievement criteria for objectives with a practical component	Identifies detailed program content and performance expectations for competencies with a practical component; may be used as a checklist prior to signing a recommendation for certification (RFC) for an apprentice	Provides detailed information on program content and performance expectations for demonstrating competency	Allows individual to check program content areas against their own knowledge and performance expectations against their own skill levels
Training Provider Standards	Defines the facility requirements, tools and equipment, reference materials (if any) and instructor requirements for the program	Identifies the tools and equipment an apprentice is expected to have access to; which are supplied by the training provider and which the student is expected to own	Provides information on the training facility, tools and equipment provided by the school and the student, reference materials they may be expected to acquire, and minimum qualification levels of program instructors	Identifies the tools and equipment a tradesperson is expected to be competent in using or operating; which may be used or provided in a practical assessment

Section	Training Providers	Employers/ Sponsors	Apprentices	Challengers
Appendix – Glossary of Acronyms			Defines program specific acronyms	

Section 2 PROGRAM OVERVIEW


Instrumentation and Control Technician

Program Credentialing Model

Apprenticeship pathway

This graphic provides an overview of the Instrumentation and Control Technician (Industrial Instrument Mechanic) apprenticeship pathway.

CROSS-PROGRAM CREDITS

Individuals who hold the credentials listed below are entitled to receive partial credit toward the completion requirements of this program

None

Occupational Analysis Chart

Occupation Description:

"Instrumentation and Control Technician" means a person who installs, repairs, maintains, replaces, calibrates, programs and services all process monitoring and/or control instruments, including indicators, recording devices, control loops and computers. These instruments may be pneumatic, hydraulic, electronic, electrical, mechanical, nuclear, optical or chemical and include signal transmission, telemetering and digital devices in industrial operations.

RELATED FUNCTIONS environment equipment (PPE) and safety equipment equipment (PPE) and safety equipment equipment		
A1 A2 A3 A4 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 </th <th></th> <th></th>		
USE TOOLS AND EQUIPMENT Use hand and power tools Use test equipment Use access equipment Use rigging, hoisting and lifting equipment		
B1 B2 B3 B4 1 1 1 1 1 1		
ORGANIZE WORK Plan work and maintain records Use computers and related applications Apply codes, standards and regulations Use trade related diagrams, drawings and Schematics		
C1 C2 C3 C4 1 2 3 4 1 1 2 3 4		
USE COMMUNICATION AND MENTORING TECHNIQUES Use communication techniques Use mentoring techniques		
D1 D2 1 4		
	stall and service s ansducers	signal
E1	2	E6

Program Overview

	Install and service mass measuring devices	Install and service density measuring devices	Install and service consistency measuring devices	Install and service vibration measuring devices	Install and service speed measuring devices	Install and service position measuring devices
	E7	E8	E9	E10	E11	E12
	measuring devices analyzers n		Install and service multiple variable computing devices			
	E13	E14	E15			
INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC EQUIPMENT	Apply the principles of air supply	Install tubing and fittings	Install and service pneumatic systems	Install and service hydraulic systems		
F	F1	F2	F3 1 2 3 F3	F4		
INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC EQUIPMENT	Apply the principles of electrical theory	Perform wiring installations using the Canadian Electrical Code (CEC)	Apply the principles of DC electricity	Apply the principles of AC electricity	Apply Boolean logic and principles of digital electronics	Apply the principles of electronics
G	G1 1 G1	G2	G3	G4	G5	G6
	Install and service electronic equipment G7					
INSTALL AND SERVICE FINAL CONTROL ELEMENTS	Install and service regulators and relief valves	Install and service control valves and actuators	Install and service valve positioners	Install and service variable speed drive (VSD) and variable frequency drive (VFD)		
	1	1 2	1 2			

Program Overview

INSTALL AND SERVICE COMMUNICATION SYSTEMS AND DEVICES I	Install and network sy	service constems	I1	Install at	ce signal	I I2	gate	ways,	d servi bridg nverte	es and	I3	3										
INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL	Establish a process con	nd optimizentrol strateg		Install ar		- J2	prog	ramn	d servi nable rs (PLC	logic	Ј3	mad	tall an chine		 Install a distribu system	ited co	ontrol	J5	Install super data a	isory	cont	ee rol and (SCADA) J
	Install and advanced s	supervisory	J7																			
INSTALL AND SERVICE SAFETY SYSTEMS AND DEVICES K	Install and systems an	service safe d devices	ty K1	Install arinstrume (SIS)	stems	, K2	envi	ronm	d servi ental ig dev		КЗ	3										

Training Topics and Suggested Time Allocation – Level 1 $\,$

INSTRUMENTATION AND CONTROL TECHNICIAN

		% of Time	Theory	Practical	Total
Line A	PERFORM SAFETY RELATED FUNCTIONS	3%	80%	20%	100%
A1	Maintain safe work environment		✓		
A2	Use personal protective equipment (PPE) and safety equipment		✓		
A3	Perform lock-out and tag-out procedures		\checkmark	\checkmark	
A4	Service and calibrate personal safety systems		✓		
Line B	USE TOOLS AND EQUIPMENT	3%	80%	20%	100%
B1	Use hand and power tools		\checkmark		
B2	Use test equipment		\checkmark	✓	
В3	Use access equipment		\checkmark		
B4	Use rigging, hoisting and lifting equipment		✓		
Line C	ORGANIZE WORK	5%	80%	20%	100%
C2	Use computers and related applications		\checkmark	✓	
C3	Apply codes, standards and regulations		\checkmark		
C4	Use trade related diagrams, drawings and schematics		✓	✓	
Line D	USE COMMUNICATION AND MENTORING TECHNIQUES	2%	60%	40%	100%
D1	Use communication techniques		✓		
Line E	INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES	15%	40%	60%	100%
E1	Calibrate and service indicating and recording devices		✓	✓	
E2	Install and service pressure measuring devices		✓	✓	
Line F	INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC EQUIPMENT	8%	40%	60%	100%
F1	Apply the principles of air supply		✓	✓	
F2	Install tubing and fittings		\checkmark	✓	
F3	Install and service pneumatic systems		✓	✓	
Line G	INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC EQUIPMENT	30%	40%	60%	100%
G1	Apply the principles of electrical theory		✓		
G2	Perform wiring installations using the Canadian Electrical Code (CEC)		✓		
G3	Apply the principles of DC electricity		\checkmark	✓	
G4	Apply the principles of AC electricity		\checkmark	✓	
G5	Apply Boolean logic and principles of digital electronics		✓	✓	
Line H H1	INSTALL AND SERVICE FINAL CONTROL ELEMENTS Install and service regulators and relief valves	28%	40% ✓	60% ✓	100%

Program Overview

		% of Time	Theory	Practical	Total
H2	Install and service control valves and actuators		✓	✓	
НЗ	Install and service valve positioners		✓	✓	
Line J	INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL	6%	40%	60%	100%
J3	Install and service programmable logic controllers (PLC)		✓	✓	
	Total Percentage for Instrumentation and Control Technician Level 1	100%			

Training Topics and Suggested Time Allocation – Level 2 INSTRUMENTATION AND CONTROL TECHNICIAN

		% of Time	Theory	Practical	Total
Line A	PERFORM SAFETY RELATED FUNCTIONS	1%	50%	50%	100%
A4	Service and calibrate personal safety systems	·	✓	✓	
Line C	ORGANIZE WORK	5%	80%	20%	100%
C2	Use computers and related applications	0,0	√ ·	✓	20070
C4	Use trade related diagrams, drawings and schematics		✓	✓	
Line E	INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES	44%	50%	50%	100%
E3	Install and service temperature measuring devices		✓	✓	
E4	Install and service level measuring devices		\checkmark	✓	
E5	Install and service flow measuring devices (volumetric and mass flow)		✓	✓	
E6	Install and service signal transducers		\checkmark	✓	
E7	Install and service mass measuring devices		\checkmark	✓	
E8	Install and service density measuring devices		\checkmark	✓	
E15	Install and service multiple variable computing devices		✓	✓	
Line F	INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC EQUIPMENT	10%	40%	60%	100%
F3	Install and service pneumatic systems		✓	✓	
F4	Install and service hydraulic systems		✓	✓	
Line G	INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC EQUIPMENT	30%	50%	50%	100%
G5	Apply Boolean logic and principles of digital electronics (advanced)		✓	✓	
G6	Apply the principles of electronics		✓	\checkmark	
G7	Install and service electronic equipment		✓	✓	
Line H	INSTALL AND SERVICE FINAL CONTROL ELEMENTS	10%	60%	40%	100%
H2	Install and service control valves and actuators (application)		✓	✓	
НЗ	Install and service valve positioners (application)		✓	✓	
	Total Percentage for Instrumentation and Control Technician Level 2	100%			

Training Topics and Suggested Time Allocation - Level 3

INSTRUMENTATION AND CONTROL TECHNICIAN

		% of Time	Theory	Practical	Total
Line C	ORGANIZE WORK	5%	80%	20%	100%
C1	Plan work and maintain records		✓	✓	
C2	Use computers and related applications		\checkmark	\checkmark	
C4	Use trade related diagrams, drawings and schematics		✓	✓	
Line E	INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES	35%	50%	50%	100%
E9	Install and service consistency measuring devices		\checkmark	\checkmark	
E10	Install and service vibration measuring devices		\checkmark	\checkmark	
E11	Install and service speed measuring devices		\checkmark		
E12	Install and service position measuring Devices		\checkmark		
E13	Install and service motion measuring Devices		\checkmark		
E14	Install and service process analyzers (liquids and solids)		✓	✓	
Line F	INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC EQUIPMENT	2%	50%	50%	100%
F3	Install and service pneumatic systems		✓	✓	
Line H H4	INSTALL AND SERVICE FINAL CONTROL ELEMENTS Install and service variable speed drive (VSD) and variable frequency drive (VFD)	5%	40% ✓	60% ✓	100%
Line I	INSTALL AND SERVICE COMMUNICATION SYSTEMS AND DEVICES	10%	80%	20%	100%
I1	Install and service control network systems		✓	✓	
I3	Install and service gateways, bridges and media converters		✓		
Line J	INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL	43%	40%	60%	100%
J1	Establish and optimize process control strategies		✓	✓	
J2	Install and service stand-alone controllers (SAC)		\checkmark		
J3	Install and service programmable logic controllers (PLC)		\checkmark	\checkmark	
J4	Install and service human machine interface (HMI)		✓	\checkmark	
J7	Install and optimize advanced supervisory control systems		✓		
	Total Percentage for Instrumentation and Control Technician Level 3	100%			

Training Topics and Suggested Time Allocation - Level 4

INSTRUMENTATION AND CONTROL TECHNICIAN

		% of Time	Theory	Practical	Total
Line C	ORGANIZE WORK	2%	60%	40%	100%
C2	Use computers and related applications		✓	✓	
C4	Use trade related diagrams, drawings and schematics		✓	✓	
Line D	USE COMMUNICATION AND MENTORING TECHNIQUES	3%	40%	60%	100%
D2	Use mentoring techniques		✓		
Line E	INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES	10%	50%	50%	100%
E14	Install and service process analyzers (gas)		✓	✓	
E15	Install and service multiple variable computing devices		✓	✓	
Line I	INSTALL AND SERVICE COMMUNICATION SYSTEMS AND DEVICES	10%	80%	20%	100%
I1	Install and service control network systems		✓	✓	
I2	Install and service signal converters		\checkmark	\checkmark	
I3	Install and service gateways, bridges and media converters		✓	✓	
Line J	INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL	60%	40%	60%	100%
J1	Establish and optimize process control strategies		✓	✓	
J2	Install and service stand-alone controllers (SAC)		\checkmark	✓	
J3	Install and service programmable logic controllers (PLC)		\checkmark	✓	
J4	Install and service human machine interface (HMI)		\checkmark	✓	
J5	Install and service distributed control systems (DCS)		\checkmark	✓	
J6	Install and service supervisory control and data acquisition (SCADA)		✓	✓	
J7	Install and optimize advanced supervisory control systems		✓	✓	
Line K	INSTALL AND SERVICE SAFETY SYSTEMS AND DEVICES	15%	60%	40%	100%
K1	Install and service safety systems and devices		✓	✓	
K2	Install and service safety instrumented systems (SIS)		\checkmark	✓	
К3	Install and service environmental monitoring devices		✓	✓	
	Total Percentage for Instrumentation and Control Technician Level 4	100%			

Section 3 PROGRAM CONTENT

Instrumentation and Control Technician

Level 1 Instrumentation and Control Technician

Line (GAC): A PERFORM SAFETY RELATED FUNCTIONS

Competency: A1 Maintain safe work environment

Objectives

2.

To be competent in this area, the individual must be able to:

Assess and manage workplace hazards.

LEARNING TASKS

1. Describe common workplace hazards

Manage workplace hazards

- Short term hazards
 - Confined space
 - o Elevations
 - o Electrical
 - Compressed gas
 - Explosive material (dust)
 - o Air quality
- Long term hazards
 - o Respiratory disease
 - o Repetitive strain injuries
 - Hearing loss
 - Chemical exposure
- Workspace awareness
 - o Safe attitude
 - o Safe housekeeping
 - o Site conditions
 - Recycling and disposal procedures
- WHMIS
- Safety Data Sheets (SDS)
- TDG
- OHS regulations
- WorkSafeBC standards
- Emergency shutoffs
- Fire prevention
- Chemical hazard response
 - Eye wash facilities
 - o Emergency shower
- Evacuation plan
 - o Marshalling/mustering areas
 - Emergency exits
 - Emergency contact/phone numbers

Achievement Criteria - (Workplace)

Performance The learner is aware of WHMIS and that it is a required certification.

Conditions To be assessed in the workplace.

Criteria Tasks must be performed within specification and time frames acceptable to industry.

Line (GAC): A PERFORM SAFETY RELATED FUNCTIONS

Competency: A2 Use personal protective equipment (PPE) and safety equipment

Objectives

To be competent in this area, the individual must be able to:

- Describe personal protective equipment (PPE) and safety equipment.
- Apply personal safety precautions and procedures.

LEARNING TASKS

1. Describe personal protective equipment (PPE)

2. Describe safety equipment

- Head protection
- Eye protection
- Hearing protection
- · Hand protection
- Clothing (FR rated)
- Foot protection
- Personal breathing apparatus
- Types
 - Fire extinguishers
 - o First-aid
 - Ventilation
 - Screens
- Procedures
- Storage
- Limitations
- Standards, acts and regulations

Line (GAC): A PERFORM SAFETY RELATED FUNCTIONS

Competency: A3 Perform lock-out and tag-out procedures

Objectives

To be competent in this area, the individual must be able to:

- Describe lock-out requirements.
- Perform lock-out and tag-out procedures.
- Explain standards and safe practices when working with AC and DC electrical circuits and devices.

LEARNING TASKS

1. Describe CEC regulations

2. Describe OHS guide to electrical hazards

3. Describe lock-out requirements for various sources of energy

4. Perform lock-out and tag-out

- Scope, general rules and applications
 - Sizing of wire and fuses
 - Class 1 and Class 2 circuits
 - Proper installation and grounding of electrical equipment
 - Area classification
 - o Other sections as needed
- Reference WorkSafeBC Publications
 - Working Safely Around Electricity
- Electrical
- · Hazardous energy
 - o Mechanical
 - o Gravity
 - o Pressure
 - Static
- Hydraulic
 - o Steam
 - o Pneumatic.vacuum
- Hazardous gases
 - o Toxic
 - o Flammable
- Procedures
 - Identify
 - o Isolate
 - o De-energize
 - Verify
 - Test for zero energy
 - Documentation
- Plant requirements
- Use of locks

LEARNING TASKS

CONTENT

- Scissors
- Breaker locks
- Cord locks
- Lock-out board
- Tags
- Cables
- Key-box system
- Blinding
- Standby person
- Isolation of vessels
- Matching of the lock-out to the vessel being worked on

Achievement Criteria

Performance The learner will be able to perform electrical lock-out including verification.

Conditions To be assessed during technical training.

The learner will be given:

- Lock-out equipment
- Isolation devices
- Multi-meter
- Lock and key
- Tag
- Personal protective equipment (PPE)

Criteria

The learner will be evaluated on:

- Safety
- Completion and verification of electrical lock-out procedures

Line (GAC): A PERFORM SAFETY RELATED FUNCTIONS

Competency: A4 Service and calibrate personal safety systems

Objectives

To be competent in this area, the individual must be able to:

- Identify the types of personal safety systems.
- Explain personal safety system applications.

LEARNING TASKS

1. Describe personal gas monitors and standard calibration routines

- Portable personal gas monitor (Cl, SO₂, H₂S, O₂, LEL, CO)
- Pull tube (Draeger)

Line (GAC): B USE TOOLS AND EQUIPMENT

Competency: B1 Use hand and power tools

Objectives

To be competent in this area, the individual must be able to:

• Use and maintain hand and power tools.

LEARNING TASKS

1. Use hand tools

2. Use power tools

- Types
 - See Section 4 Tools and Equipment
- Maintenence
- Types
 - See Section 4 Tools and Equipment
- Maintenence

Line (GAC): B USE TOOLS AND EQUIPMENT

Competency: B2 Use test equipment

Objectives

To be competent in this area, the individual must be able to:

- Use test equipment.
- Mount and install devices.

LEARNING TASKS

CONTENT

- 1. Confirm and maintain integrity of test equipment
- Test gauge
- Multimeter
- Manometer
- Dead weight tester
- Digital test equipment
- Portable personal gas monitors
- 2. Describe mounting and installation hardware and installation practices
- Manufacturers' instructions
- Types of mounting hardware
 - o Uni-strut
 - o Clamps
 - U-bolts
- Installation locations

Achievement Criteria

Performance The learner will be able to:

- Use test equipment
- Mount and install devices

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

to industry, and the learner must achieve a minimum grade of 70%

Line (GAC): B USE TOOLS AND EQUIPMENT

Competency: B3 Use access equipment

Objectives

To be competent in this area, the individual must be able to:

• Describe the safe use of access equipment.

LEARNING TASKS

CONTENT

1. Describe the safe use of access equipment

- Types
 - Ladders
 - o Platforms
 - Lifts
- WorkSafeBC regulations

Line (GAC): B USE TOOLS AND EQUIPMENT

Competency: B4 Use rigging, hoisting and lifting equipment

Objectives

To be competent in this area, the individual must be able to:

• Describe the use of rigging, hoisting and lifting equipment.

LEARNING TASKS

1. Describe the use of rigging, hoisting and lifting equipment.

- Types
 - o Tirfors (come-along)
 - o Aerial lift platform
 - o Slings
 - Shackles
 - Hoists
 - o Cranes
- WorkSafeBC regulations

Line (GAC): C ORGANIZE WORK

Competency: C2 Use computers and related applications

Objectives

To be competent in this area, the individual must be able to:

• Configure and program instrumentation devices to manufacturers' specifications.

LEARNING TASKS

Examines diagnostic and configuration software, hardware and firmware

- 2. Uses diagnostic and configuration software, hardware and firmware
- 3. Maintains back-up data and documentation

CONTENT

- Types
 - SMART calibrators
 - HART communicators
- Configuration and programming software, hardware and firmware used in Level 1
- Configuration and programming software, hardware and firmware used in Level 1
- Configuration and applicable programming software

Achievement Criteria

Performance The learner will be able to:

- Use configuration and programming software, hardware and firmware
- Produce back up data and documentation

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

to industry, and the learner must achieve a minimum grade of 70%

Line (GAC): C ORGANIZE WORK

Competency: C3 Apply codes, standards and regulations

Objectives

To be competent in this area, the individual must be able to:

- Explain the purpose and applications of standards, codes and regulations.
- Access work-related safety regulations and publications.

LEARNING TASKS

1. Navigate WorkSafeBC website to access workrelated safety regulations and publications

- http://worksafebc.com
- OHS Regulation
 - o Purpose of Regulation
 - o General Requirements of OHS
 - o Right to refuse unsafe work
 - Government/Employer/ Employee responsibilities
 - Chemical and biological agents
 - Noise, vibration, radiation and temperature
 - Tools machinery and equipment safety
 - Ladders, scaffolds and temporary work platforms
 - o Rigging, cranes and hoists
 - Mobile equipment
 - Transportation of workers
 - Traffic control
 - Electrical safety
 - Oil and gas industries
- PDF documents from WorkSafeBC website (publications):
 - Effective Safety and Health Programs
 - Lockout/Tagout
 - o Fall Protection
 - Confined Space Hazards
 - Confined Space Entry
 - Working Safely Around Electricity
 - Chlorine Safe Work Practices
 - WHMIS/GHS manuals
 - o Hazard Symbols Key Booklet
 - Hazard Alerts
- Purpose and intent of codes /

LEARNING TASKS this trade

CONTENT

regulations/standards

- WHMIS/GHS and use of SDS
- o CSA certification standards
- o ISA documentation
- o CEC (Canadian Electrical Code)
- o Boiler and Pressure Vessel Code
- CNSC (Canadian Nuclear Safety Commission)
- National Energy Board Regulations for Custody Transfer
- Oil and Gas Commission Accepted Practices for Measurement
- Transportation of Dangerous Goods Act
- o BC Mines Act
- o BC Environmental Regulations
- Other related codes and standards, as needed

Line (GAC): C **ORGANIZE WORK**

C4 Competency: Use trade related diagrams, drawings and schematics

Objectives

To be competent in this area, the individual must be able to:

- Describe drawings and schematics.
- Describe symbols.
- Use P&ID/P&C drawings.

LE/	ARNING TASKS	CONTE	ENT	
1.	Describe types of schematics and drawings	•	P&ID	

SAMA

Isometric

Orthographic

2. Describe symbols and conventions ISA

SAMA

3. Use basic schematics and drawings P&ID

P&C

Achievement Criteria

Performance The learner will be able to use drawings and schematics.

Conditions As part of practical lab tasks, given the required tools and materials.

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

to industry, and the learner must achieve a minimum grade of 70%

Line (GAC): D USE COMMUNICATION AND MENTORING TECHNIQUES

Competency: D1 Use communication techniques

Objectives

To be competent in this area, the individual must be able to:

Communicate with others.

LEARNING TASKS

1. Communicate with others

- Trade terminology
- Effective verbal communication skills
- Effective written communication skills
- Consulting to solve problems

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING DEVICES

Competency: E1 Calibrate and service indicating and recording devices

Objectives

To be competent in this area, the individual must be able to:

• Calibrate and service chart recorders and gauges using principles of links and levers.

LEARNING TASKS

1. Examine types of recording devices

- 2. Examine indicating devices
- 3. Calibrate and service indicating devices using principles of zero, span and angularity adjustments as they relate to links and levers

- Chart recorders
 - Pneumatic
 - Electronic
- Principles of links and levers
 - o Motion multiplication
 - o Angularity
 - o Zero
 - o Span
- Displays
 - o Configurable
 - CRT
 - o LCD/LED
 - o Plasma
- Gauges
 - o Panel
 - o Field
- Accessories
 - Pigtail siphons
 - o Dampening
 - o Chemical seals
- Calculation of head correction
- Measuring element and range
 - Bourdon tube
 - o Helical
 - o Spiral
 - Bellows
 - o Diaphragm capsule
 - o Slack diaphragm
- Applications
 - o Metallurgies
 - o Oil filled
 - $\circ \quad Compound \\$
 - o Combination
 - Duplex

LEARNING TASKS

4.

CONTENT

- o Differential
- o Draft
- Oxygen service
- o Refrigeration service
- Identification of measuring element and input measurement scale
- Device calibration using principles of zero, span and angularity adjustments as they relate to links and levers
- Pen arcing time line
- Power supply
- Pens
- Paper

Achievement Criteria

Performance The learner will be able to:

Service recording devices

- Calibrate pressure gauges
 - Draft gauge
 - o Bourdon gauge
- Calibrate mechanical, pneumatic and electrical chart recorders

Conditions

As part of practical lab tasks, given the required tools and materials

Criteria

Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING DEVICES

Competency: E2 Install and service pressure measuring devices

Objectives

To be competent in this area, the individual must be able to:

• Configure and calibrate pneumatic, electronic and digital measuring devices to process requirements.

LEARNING TASKS

1. Examine types of pressure

2. Examine types of pressure measuring devices

3. Examine installation of pressure measuring devices

4. Configure / calibrate pressure measuring devices

- Absolute
- Differential
- Gauge
- Vacuum
- Conversion tables
 - o Pressure conversion formulas
 - Steam tables (relationship between temperature and pressure)
- Head correction calculation
- Pneumatic
- Electronic
- Digital
- Manufacturers' specifications
- Selection of device
- Air/power supply requirements
- Location of device
- Isolation of device
- Connection of device to process
- Connection of device to control system
- · Sealants and gaskets
- Device operation
- Primary calibration standards
 - Manometer types
 - Well
 - Raised Well
 - Dual tube
 - Incline
 - U-tube
 - Slack tube
 - Manometer fluids
 - Mercury
 - Unity oil

LEARNING TASKS

CONTENT

- Water
- Red oil
- Meriam #3
- Fluoroscien
- o Dead weight testers
 - Pneumatic
 - Hydraulic
- Calibration/configuration parameters
- Interpretation of results
- Identification of cause/effect of calibration errors
- Adjustments to bring device within calibration parameters
- Returning device to service after calibration
- Document calibration results
- Manufacturers' recommended maintenance procedures

5. Maintain device

Achievement Criteria

Performance The learner will be able to configure and calibrate pressure measuring devices

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): F INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC EQUIPMENT

Competency: F1 Apply the principles of air supply

Objectives

To be competent in this area, the individual must be able to:

• Explain the purpose, operation and servicing of air supply systems.

LEARNING TASKS

CONTENT

1. Examine instrument air systems and equipment	 Need for clean, dry air
---	---

- Air dryers
- Air receivers
- Air filters
- 2. Examine air distribution systems Mill air
 - Instrument air
 - System requirements

Air compressors

- 3. Use relative humidity to infer dew point
- Chilled mirror
- Hygrometer
- Hair hygrometer
- Sling psychrometer
- Digital psychrometer
- Bulk polymer resistance sensor
- Psychrometric chart
- 4. Examine the servicing procedures for air supply systems
- Servicing requirements
 - o Traps
 - Dessicant
 - Pre and post filters

Achievement Criteria

Performance The learner will be able to:

- Measure dew point
- Create an instrument air supply drawing from an existing system

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): F INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC EQUIPMENT

Competency: F2 Install tubing and fittings

Objectives

To be competent in this area, the individual must be able to:

• Select, assemble and install tubing and assorted fittings (as per drawings provided).

LEARNING TASKS

Examine types of tubing and installation procedures

2. Examine types of fittings and installation procedures

- 3. Examine tube bending techniques
- 4. Install tubing and fittings

- Plastic
- Stainless steel
- Copper
- Rubber
- · Process and pressure requirements
 - o Sizes
 - Pressure and temperature ratings
- Types of fittings
 - Unions
 - Elbows
 - o Tees
 - Couplings
 - o Bushings
 - o Reducers
 - o Caps
 - o Plugs
 - Bulkhead fittings
 - o Others
- Tube fittings
 - Compression
 - Flared
 - Hydraulic
- · Process and pressure requirements
 - Sizes
 - Pressure and temperature ratings
- Pipe fittings
 - > Ratings
- Calculating dimensions
- Manual tube benders
- Hydraulic tube benders
- Ferrule construction and location

LEARNING TASKS

CONTENT

- Tightening fittings
- Follow P&ID drawings
- Select appropriate tubing and fittings

Achievement Criteria

Performance The learner will be able to:

- Identify types of fittings
- Bend tubing to a pre-determined pattern

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC Line (GAC): F **EQUIPMENT**

Competency: F3 Install and service pneumatic systems

Objectives

To be competent in this area, the individual must be able to:

Calibrate pneumatic instruments to required specifications.

LEARNING TASKS

CONTENT

Examine specifications and hazards of pneumatic equipment

- Compressed air safety
- Pneumatic signals (3-15 psi, 6-30 psi, 20-100 kPa)
- Required air supplies
- 2. Examine types of pneumatic equipment
- **Transmitters**
- Converters
- **Positioners**
- Controllers
- Relays
- Examine fundamental operating principles of pneumatic equipment
- Force balance
- Examine fundamental pneumatic equipment 4.
- Motion balance
- installation procedures
- Selection of equipment
 - Application
 - Materials
- Location
- Set up and adjustments
- Isolation of equipment
- Repair and replacement methods
- Component selections

5. Calibrate pneumatic transmitters

- Force balance calibration procedure
- Motion balance calibration procedure
- Documentation of calibration results

Achievement Criteria

Performance The learner will be able to calibrate pneumatic equipment

Conditions As part of practical lab tasks, given the required tools and materials

Tasks must be performed within specifications, safety standards and time frames acceptable Criteria

Line (GAC): G INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC EQUIPMENT

Competency: G1 Apply the principles of electrical theory

Objectives

To be competent in this area, the individual must be able to:

- Explain principles, sources, types and measures of electrical power.
- Apply related mathematical formulas.

LEARNING TASKS

1. Examine basic principles of electrical theory

2. Examine sources of AC/DC electrical energy

- 3. Examine voltage, current and resistance
- 4. Explain Ohm's law

- Atomic structure
- Conductivity of an element
 - o Conductor
 - Insulator
 - Semiconductor
- Electrical current
 - Conventional Theory
 - o Electron Theory
- Generating electricity
 - Friction
 - o Temperature differences
 - Light
 - Pressure
 - Chemical reactions
 - o Magnetism
- Magnetic Lines of Force
- Magnetic induction
 - Alternating current (AC)
 - Generated by power plants by magnetic induction
 - Voltage
 - Voltage levels
 - Polarity
- DC voltage sources
 - Fixed polarity
 - Constant voltage
 - Fixed direction of flow in a circuit
- Voltage
- Amperage
- Resistance
- Relationship between voltage (E),

LEARNING TASKS

CONTENT

current (I) and resistance (R) in an electrical circuit

 \circ E= I x R

Line (GAC): G INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC

EQUIPMENT

Competency: G2 Perform wiring installations using the Canadian Electrical Code (CEC)

Objectives

To be competent in this area, the individual must be able to:

• Examine wiring installations in accordance with CEC requirements.

LEARNING TASKS

1. Examine wiring installation requirements

- Materials
- Connections
 - Crimping
 - Terminal blocks
 - Marrettes
 - o Soldering
 - Protection (heat shrink, taping etc.)
- Shielding
- Grounding
- Grounding loops
- CEC requirements
- Wire sizing
- Routing of wiring runs
- Stripping wire
- Labeling/colour-coding wire
- Connecting wire

Line (GAC): G INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC EQUIPMENT

Competency: G3 Apply the principles of DC electricity

Objectives

To be competent in this area, the individual must be able to:

- Apply the basic principles of DC electricity.
- Use DC electrical equipment and instruments.

LEA	RNING TASKS	CONTENT
1.	Examine operation and applications of various batteries	Lead acidNiCadNiMhLithium ion
2.	Measure electrical current, voltage and resistance	Analog multimetersDigital multimeters
3.	Calculate currents, voltages and resistance using Ohm's law	 Series circuits Parallel and combination circuits Formula E= I x R
4.	Define and reference voltage measurement to circuit common	 Difference between ground and circuit common Multimeter Oscilloscope and scope meter Circuit schematic
5.	Calculate electrical power in watts	 Apply Watt's Law to define power rating of appliances Watts = E x I
6.	Examine resistors, potentiometers and rheostats	DifferencesPower ratingsApplicationsColour codes
7.	Apply appropriate sections of CEC	• Scope, general rules and definitions of the CEC

Achievement Criteria

Performance The learner will be able to:

- Design and build a circuit
- Test for accuracy by calculating and measuring current, voltage and resistance
- Define and reference voltage measurements

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): G INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC EQUIPMENT

Competency: G4 Apply the principles of AC electricity

Objectives

To be competent in this area, the individual must be able to:

- Apply the basic principles of AC electricity.
- Use AC circuits.

LEA	ARNING TASKS	CONTENT
1.	Describe AC electricity	 Generation
		 Polarity and waveform analysis
2.	Examine various types of transformers	• Step up
		Step down
		• Automatic
		• SOLA
		 Isolation
3.	Examine the use of capacitors and inductors in AC circuits	 Applications
		 Filtering
		 Regulating voltage
		 Power factor correction
4.	Size electrical components for various circuits	 Capacitors
		 Inductors
		 Resistors
		• Wire
		• Fuses
5.	Build and test circuits	 Demonstrate use of various AC components in circuits
		• Measuring techniques and equipment
		 Sizing components
6.	Types of AC circuits	• Class 1
		• Class 2
		• Section 16 CEC
7.	Examine installation procedures for AC equipment	• Wiring methods (Section 12 CEC)
		 Support
		 Grounding
		 Shielding
8.	Apply proper circuit connection techniques	 Soldering
		 Crimping
		 Printed circuit board repair

Achievement Criteria

Performance The learner will be able to:

- Size electrical components
- Build and test AC circuits
- Apply proper circuit connection techniques

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): G INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC

EQUIPMENT

Competency: G5 Apply Boolean logic and principles of digital electronics

Objectives

To be competent in this area, the individual must be able to:

• Explain the principles of digital electronics in logic applications.

LEARNING TASKS

1. Examine basic principles of digital logic

CONTENT

- Discrete values
- Waveforms
- Logic levels
- Conversions
 - Digital to analog
 - o Analog to digital
 - o Binary to decimal
 - o Sum of weights
 - o Octal to decimal
 - o Decimal to octal
 - Binary to octal
 - Binary to hexadecimal
- Logic gate symbols
 - Negation and polarity indicators
 - NOT gate
 - AND gate
 - OR gate
 - NAND gate
 - NOR gate
 - o XOR gate
 - XNOR gate

Achievement Criteria

Performance The learner will be able to apply principles of digital logic in Instruction List (IL)

programming

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): H INSTALL AND SERVICE FINAL CONTROL ELEMENTS

Competency: H1 Install and service regulators and relief valves

Objectives

To be competent in this area, the individual must be able to:

- Service regulators.
- Explain the operation of relief valves.
- Service basic emergency shutdown devices (ESDs).

LEARNING TASKS

CONTENT

1. Examine regulators

- Purpose
- Pressure drops
- Types
 - Relieving
 - o Non-relieving
 - o Pilot operated
- Definitions
 - Droop
 - o Turndown
- Applications
 - o Pressure reducing
 - Pressure relieving
- 2. Examine operation and applications of regulators
- Air
 - Water
 - Steam
 - Oil
 - Gas
 - Differential

3. Service and maintain regulators

- Components
 - o Diaphragms
 - Bolts
 - o Springs
 - Seats
 - Gaskets
- Disassembling
 - o Spring compression
- Inspect
- Reassemble
- Test
- Applications
 - Safety device

4.

Examine relief valves

LEARNING TASKS

5. Service basic ESDs

CONTENT

- Reset differential
- Certification and testing
- Manipulate process to allow for servicing
 - Alerting operations
 - Awareness of impact on process
- Test ESD components
- Alarming
 - o Audible alarms
 - Visible alarms
 - o Response to alarm
 - Notifications

Achievement Criteria

Performance The learner will be able to:

- Service regulators
- Service basic ESDs

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): H INSTALL AND SERVICE FINAL CONTROL ELEMENTS

Competency: H2 Install and service control valves and actuators

Objectives

To be competent in this area, the individual must be able to:

- · Service control valves.
- Install and service actuators.

LEARNING TASKS

1. Examine actuators

- Types
 - Pneumatic
 - o Hydraulic
 - o Electric
- Applications
 - o Fail open
 - Fail close
 - o Fail last
- Actions
 - o Spring return
 - o Double-acting
- Components
 - Diaphragms
 - o Plates
 - Stem connector (coupling)
 - Bushings
 - o O-rings
 - o Pistons
 - Motors
 - Springs
- Required Operating Environment
- Process applications
 - o Metallurgy
 - Seal/shut off requirements
- Flow Characteristics
 - o Quick opening
 - o Linear
 - Equal percentage
- Body Types
 - Sliding stem
 - Globe
 - Bar stock
 - Pinch valve

LEARNING TASKS

CONTENT

- o Rotary
 - Butterfly
 - E-Disc
 - Segmented ball
 - Through-bore ball
 - Restricted trim
- Components
 - o Cages
 - o Plugs
 - Seats
 - o Stems
 - Packing
- Types and applications of valve packing
 - Teflon
 - o Graphite
 - o Rope
- Gaskets
- Sealants
- Positioning valve in process
- Securing valve using appropriate process
 - o Flanged
 - Screwed
 - Wafered/flangeless
- Isolation of valve from process
- Testing procedures
 - Stroke to ensure proper operation
 - Leak testing
- Possible faults
 - Leaking packing
 - Valve passing
 - o Damaged parts
 - Incorrect travel
- Cleaning/lubricating
- Repairing/rebuilding
- Matching to valve
- Connecting to valve
 - o Lifting procedures
- Valve travel
- Bench set
- Verifying operation
 - o Correct air supply pressure

3. Service control valves

4. Install and service actuators

LEARNING TASKS

CONTENT

- Function testing
- Possible faults
 - o Leaking diaphragms
 - o Broken springs
 - o Damaged/worn O-rings
- Removing/replacing components
- Cleaning/lubricating components
- Assembling/disassembling
 - Spring compression
 - Loading on stem connector
 - o Returning to service

Achievement Criteria

Performance The learner will be able to:

- Service control valves
- Remove, service and install actuators on control valves

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): H INSTALL AND SERVICE FINAL CONTROL ELEMENTS

Competency: H3 Install and service valve positioners

Objectives

To be competent in this area, the individual must be able to:

• Install and service valve positioners on final control elements.

LEARNING TASKS

1. Examine valve positioners

- Types
 - o Pneumatic
 - o Electronic
 - Digital
 - o Electro hydraulic
 - o Electro mechanical
- Applications
 - Sliding stem/rotary
 - o Piston/diaphragm
- Components
 - o Levers
 - Nozzles
 - o Flappers
 - o Relays
- Auxiliaries
 - o Locks
 - Boosters
 - o Speed controls
- Parameters
- Relation to actuator type/application
- Mounting
- Connecting to actuator
- Connecting to process control system
- Configuring
 - o Set stroke
 - Set pressures
 - Match to actuator
- Calibrating
 - Connecting calibration instruments
 - Interpretation of calibration results
 - Cause/effect of calibration errors

LEARNING TASKS

CONTENT

- Component maintenance
 - o Remove
 - o Replace
 - o Repair
 - o Clean
- Returning to service

Achievement Criteria

Performance The learner will be able to install and service valve positioners

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL

Competency: J3 Install and service programmable logic controllers (PLC)

Objectives

To be competent in this area, the individual must be able to:

- Explain basic programmable logic controllers (PLCs) from introductory materials on PLCs
- Create a simple PLC program using instruction list (IL) language

LEARNING TASKS

1. Examine types of PLCs

- 2. Identify the five IEC 61131-3 PLC programming languages
- 3. Examine PLC components

4. Create a simple PLC program using the Instruction List (IL) programming language

- Hardware architecture
- Control capabilities
 - Discrete control
 - Analog control
- Compatibility with other process systems
- Networks
- Protocols
- Structured text
- Instruction list
- Ladder logic
- Function block
- Sequential function chart
- CPU
- Memory organization
- Input interface
- Output interface
- Power supply
- Programming/monitoring interface
- Data table
- User program
- IL operators in the program
 - LD, ST, S, R, AND, OR, XOR, ADD, SUB, MUL, DIV, GT, GE, EQ, NE, LE, LT
- Subroutine commands
 - o JMP, CAL, RET
- Timer and Counter commands
 - TON, CD

Achievement Criteria

Performance The learner will be able to create a simple PLC program using the Instruction List (IL)

programming language

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Level 2 Instrumentation and Control Technician

Line (GAC): A PERFORM SAFETY RELATED FUNCTIONS

Competency: A4 Service and calibrate personal safety systems

Objectives

To be competent in this area, the individual must be able to:

- Identify the types of personal safety systems.
- Explain personal safety system applications.

LEARNING TASKS

CONTENT

1. Describe radiation safety devices

- Radiation (gamma) survey meter
- Personal dosimeter

Line (GAC): C ORGANIZE WORK

Competency: C2 Use computers and related applications

Objectives

To be competent in this area, the individual must be able to:

• Configure and program instrumentation devices to manufacturers' specifications.

LEARNING TASKS

1. Examine diagnostic and configuration software, hardware and firmware

2. Use diagnostic and configuration software, hardware and firmware

CONTENT

- Types
 - PC software
 - SMART calibrators
 - HART communicators
- Configuration and programming software used in Level 2
 - Flow element sizing programs
 - Temperature and density signal linearization
 - o Control valve sizing
- Configuration and programming software used in Level 2
 - Primary flow element sizing programs
 - o AGA Mass flow computers
 - Control valve sizing programs

Achievement Criteria

Performance The learner will be able to:

- Perform computerized flow calculations
- Program an AGA mass flow computer
- Size a control valve given the process application parameters

Conditions A

As part of practical lab tasks, given the required tools and materials

Criteria

Tasks must be performed within specifications, safety standards and time frames acceptable to industry, and the learner must achieve a minimum grade of 70%

Line (GAC): C ORGANIZE WORK

Competency: C4 Use trade related diagrams, drawings and schematics

Objectives

To be competent in this area, the individual must be able to:

- Describe drawings and schematics.
- Describe symbols.
- Use P&ID/P&C/loop drawings.

LEARNING TASKS

- 1. Examine types of schematics and drawings
- 2. Examine symbols and conventions
- 3. Use and modify basic schematics and drawings

CONTENT

- P&ID, SAMA, isometric, orthographic and loop drawings
- ISA and SAMA symbols
- P&ID/P&C/loop drawings

Achievement Criteria

Performance The learner will be able to use and modify drawings and schematics.

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E3 Install and service temperature measuring devices

Objectives

To be competent in this area, the individual must be able to:

• Install, calibrate and service temperature measuring devices.

LEARNING TASKS

- 1. Examine temperature scales
- 2. Examine temperature measuring devices and their operation

3. Examine temperature calibrating instruments

4. Install, calibrate and service temperature measuring devices

- Fahrenheit
- Celsius
- Kelvin
- Conversions between scales
- Thermometer
- Thermocouple
 - o Thermocouple tables
- Resistive Thermal Device (RTD)
 - RTD tables
- Thermistor
- Filled thermal system
- Pyrometer
- Semi-conductor mechanical thermal system
- Infrared radiation
- Fibre Optic
- Thermometers
- Multimeters
 - o Millivolt source
 - Resistance source
- Temperature baths
- Dry block calibrators
- Thermocouple simulators
- Decade box electronic and analog
- Accuracy
- Calibration parameters of temperature measuring devices
- Manufacturers' specifications
- Best Practices for selection/location of measuring device
 - Response time
 - Temperature ranges

LEARNING TASKS

CONTENT

- Resolution
- Thermowell selection and installation
 - o Metallurgy
 - Heat transfer
- Thermocouples
 - Grounding
 - o Cold junction compensation
 - Types (J, K...T)
 - Extension wires
 - Colour codes (note: North American and European colour codes are different)
 - North American
 - European
- RTDs
 - Alpha and DIN standards
 - o 2, 3 and 4 wire
 - o 100, 200...1000 ohm
 - Callendar Van Dusen
- Device check/calibration
 - o Wheatstone bridge
 - Simulators
 - Decade box
- Interpretation of calibration results
- Cause/effect of calibration error
- Device adjustments
- Repairing/replacing device components
- Verification of operation
- Returning device to service
- Documenting calibration

Achievement Criteria

Performance The learner will be able to:

- Assess temperature installations to confirm best practices
- Calibrate and service temperature measuring devices

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E4 Install and service level measuring devices

Objectives

To be competent in this area, the individual must be able to:

• Install, calibrate and service level measuring devices.

LEARNING TASKS

Examine level measuring devices and their operation

• Poi

- Point level
 - Capacitance
 - Float switches
 - o Tuning fork
 - Bindicator
 - MicrowaveUltrasonic
 - Nuclear
- Continuous level
 - o Hydrostatic head
 - Laser
 - o Ultrasonic
 - o Radar
 - o Sight glass
 - o Bubble pipe
 - Resistance tape
 - Magnetic float
 - o Load cell
 - Displacement
 - Capacitance
- Boiler drum level
- Pressure calibrator
- Laptop/software
- Handheld programmer (configurator)
- Manufacturers' specifications
- Selection/location of measuring device
 - o Process application
 - Process medium
 - o Price
 - Best practices
- Verify operation
- Device check/calibration
- Interpretation of calibration results

- 2. Examine calibration instruments used on level measuring devices
- 3. Install, calibrate and service level measuring devices

LEARNING TASKS

CONTENT

- Cause/effect of calibration error
- Device adjustments
- Repairing/replacing device components
- Verification of operation
- Returning device to service
- Documenting calibration

Achievement Criteria

Performance The learner will be able to:

- Assess level installations to confirm best practices
- Calibrate and service level measuring devices

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E5 Install and service flow measuring devices (volumetric and mass flow)

Objectives

To be competent in this area, the individual must be able to:

• Install, calibrate and service flow measuring devices to process requirements.

LEARNING TASKS

1. Examine flow measuring devices and their operation

- Bernoulli's Theorem
- Differential pressure sensors
 - Orifice plate
 - o Flumes/weirs
 - Annubar
 - o Pitot tube
 - o Target meter
 - o Elbow meter
 - Venturi
 - Wedge
 - o Flow nozzle
 - Variable area flow meters
- Velocity
 - o Turbine
 - Vortex
 - o Ultrasonic
 - o Magnetic flow meter
- Mass flow
 - Coriolis
 - Multi-variable mass flow
 - o Thermal
 - Weightometer fundamentals (conveyors)
- Positive displacement meter
- Other flow measurement devices
- Pressure calibrators
- Flow simulators
- Temperature calibrator
- Frequency generator
- Laptop/software
- Handheld programmer (configurator)
- Manufacturers' specifications

- 2. Examine calibration instruments used on flow measuring devices
- 3. Install, calibrate and service flow measuring devices

LEARNING TASKS

CONTENT

- Selection/location factors
 - Straight pipe requirements
 - o Accuracy requirements
 - o Process application
 - Process medium
 - o Cost
 - Best practices
- Verify operation
- Device check/calibration
- Interpretation of calibration results
- Cause/effect of calibration error
- Device adjustments
- Repair/replace device components
- Returning device to service
- Documenting calibration

Achievement Criteria

Performance The learner will be able to:

- Assess flow installations to confirm best practices
- Calibrate and service flow measuring devices
- Program and calibrate multivariable mass flow devices

Conditions

As part of practical lab tasks, given the required tools and materials

Criteria

Tasks must be performed within specifications, safety standards and time frames acceptable to industry, and the learner must achieve a minimum grade of 70%

Harmonized Program Outline

May 2020

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND

INDICATING DEVICES

Competency: E6 Install and service signal transducers

Objectives

To be competent in this area, the individual must be able to:

• Calibrate and service signal conditioners to process requirements.

LEARNING TASKS

CONTENT

1. Examine signal conditioners and their operation

Calibrate and service signal conditioners

- Pneumatic relays
 - Signal converters
 - O Volume boosters
- I/P, P/I transducers
- Hardware and software
 - High select
 - o Function block
- Square root extraction
- Integrators
- Manufacturers' specifications for installation
 - o Moore Industries
 - o Fisher 846
 - o Rosemount

Achievement Criteria

2.

Performance The learner will be able calibrate and service signal conditioners

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E7 Install and service mass measuring devices

Objectives

To be competent in this area, the individual must be able to:

• Install, calibrate and service mass measuring devices.

LEARNING TASKS

- Examine mass (weight) measuring devices and their operation
- 2. Examine calibration instruments used on mass (weight) measuring devices
- Install, calibrate and service mass (weight) measuring devices

CONTENT

- Load cells
- Scales
- Strain gauges
- Test weights
- Calibration chains
- Wheatstone bridge
- Laptop/software
- Handheld programmer (configurator)
- Manufacturers' specifications
- Selection/location of measuring device
 - o Process application
 - o Cost
 - o Best practices
- Verify operation
- Device check/calibration
- Interpretation of calibration results
- Cause/effect of calibration error
- Device adjustments
- Repair/replace device components
- Returning device to service
- Documenting calibration

Achievement Criteria

Performance The learner will be able to:

- Assess mass (weight) installations to confirm best practices
- Calibrate and service weight measuring devices

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E8 Install and service density measuring devices

Objectives

To be competent in this area, the individual must be able to:

• Install, calibrate and service density measuring devices.

LEARNING TASKS

Examine density measuring devices and their operation

- 2. Examine calibration instruments used on density measuring devices
- Install, calibrate and service density measuring devices

CONTENT

- Types
 - Hydrometer
 - O Hydrostatic head
 - o Displacers
 - o Nuclear
 - Refractometer
 - o Boiling Point Rise (BPR)
 - o Coriolis meters
- Effect of temperature on density
- Pressure calibrator
- Laptop/software
- Handheld programmer (configurator)
- Manufacturers' specifications
- Selection/location of measuring device
 - o Process application
 - o Process medium
 - Price
 - Best practices
- Verify operation
- Device check/calibration
- Interpretation of calibration results
- Cause/effect of calibration error
- Device adjustments
- Repairing/replacing device components
- Verification of operation
- Returning device to service
- Documenting calibration
- Radiation source regulatory safety test

Achievement Criteria

Performance The learner will be able to:

- Assess density installations to confirm best practices
- Calibrate and service density measuring devices
- Perform safety tests on a radiation source

Conditions

As part of practical lab tasks, given the required tools and materials

Criteria

Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E15 Install and service multiple variable computing devices

Objectives

To be competent in this area, the individual must be able to:

- Configure a multivariable steam or natural gas flow metering system.
- Explain the purpose and application of a temperature compensated vortex steam flow meter.

LEARNING TASKS

CONTENT

1. Examine multivariable flow meters

- Operation of multivariable flow meters
 - Mass steam flow
 - Mass air flow
 - Temperature compensated vortex steam flow (volumetric to mass)
 - Floboss meters for natural gas custody transfer
 - Pressure and temperature compensated natural gas turbine flow measurement

- 2. Configure (calibrate) multivariable flow meters
- Calibration / certification of multivariable transmitters
 - Mass steam flow
 - Mass air flow
 - Temperature compensated vortex steam flow (volumetric to mass)
 - Floboss meters for natural gas custody transfer
 - Pressure and temperature compensated natural gas turbine flow measurement

Achievement Criteria

Performance The learner will be able to program and calibrate a multivariable flow transmitter

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): F INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC

EQUIPMENT

Competency: F3 Install and service pneumatic systems

Objectives

To be competent in this area, the individual must be able to:

• Explain the installation and servicing of pneumatic systems

LEARNING TASKS

- 1. Examine operating principles of pneumatic equipment
- 2. Examine pneumatic equipment installation procedures

CONTENT

- Force balance
- Motion balance
- Selection of equipment
 - o Application
 - o Materials
- Location
- Set up and adjustments
- Isolation of equipment
- Repair and replacement methods
- Component selections

Achievement Criteria

Performance The learner will be able to:

- Troubleshoot a pneumatic transmitter
- Service and maintain a pneumatic transmitter

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): F INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC EQUIPMENT

Competency: F4 Install and service hydraulic systems

Objectives

To be competent in this area, the individual must be able to:

- Explain the types of hydraulic equipment, its specifications and hazards
- Diagnose control devices for different types of hydraulic equipment

LEARNING TASKS

- 1. Examine hydraulic specifications and hazards
- Contamination
 - Types
 - Sources
- · Fluid cleanliness standards
- Filter media
 - o Types
 - o Ratings
 - Selection
 - o Lifespan
 - Housing selection
- Filter location
- Fluid analysis
- 2. Examine different types of hydraulic equipment
- Types
 - $\circ \quad Pumps$
 - o Relays
 - Regulators
- Components
 - o Seals
 - Spring
 - o Pistons
- 3. Diagnose control devices for hydraulic systems
- Cleaning
 - Solvents
 - Brushes
- Connections
 - To system
 - Defective
- Repair
- Valves
- Pumps
- Sensors

Achievement Criteria

Performance The learner will be able to diagnose hydraulic control systems

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): G INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC

EQUIPMENT

Competency: G5 Apply Boolean logic and principles of digital electronics

Objectives

To be competent in this area, the individual must be able to:

• Explain the principles of digital electronics in logic applications.

LEARNING TASKS

1. Review basic principles of digital logic

Examine digital signal processing

CONTENT

- Discrete values
- Waveforms
- Logic levels
- Conversions
 - o Digital to analog
 - o Analog to digital
 - Binary to decimal
 - o Sum of weights
 - o Octal to decimal
 - Decimal to octal
 - Binary to octal
 - o Binary to hexadecimal
- Logic gate symbols
 - Negation and polarity indicators
 - NOT gate
 - o AND gate
 - OR gate
 - o NAND gate
 - o NOR gate
 - o XOR gate
 - XNOR gate
- Analog to digital conversion
- Digital to analog conversion
- Signal to noise ratio
 - o Analog and digital filters
- Signals transformation
- Magnitude
- Phase
- Karnaugh Maps

Achievement Criteria

2.

Performance The learner will be able to:

• Interpret digital logic circuits

• Build and test a basic digital logic circuit

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): G INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC

EQUIPMENT

Competency: G6 Apply the principles of electronics

Objectives

To be competent in this area, the individual must be able to:

• Explain electronic equipment and its operation.

LEARNING TASKS

CONTENT

1. Examine electronic equipment and its operation

- Analog and digital
- Discrete components and their operation
 - Transistors
 - Op amps
 - Diodes
 - o Zener diodes
- Power supplies
 - Half and full wave rectified
 - Switching
 - o Bridge rectifier
 - Filtering
 - o UPS system
 - Online (Double conversion)
 - Line-interactive

Achievement Criteria

Performance The learner will be able to troubleshoot electronic equipment to board level

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): G INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC EQUIPMENT

Competency: G7 Install and service electronic equipment

Objectives

To be competent in this area, the individual must be able to:

• Install and service electronic equipment to manufacturers' specifications.

LEARNING TASKS

I. Install and troubleshoot electronic equipment

2. Service electronic equipment

- Select equipment
 - o Application
 - Components
- Select/install wiring
 - Current loops
 - Wiring 2, 3 and 4 wire transmitters
 - o I/I
 - Ground loops
 - o Manufacturer's specifications
- Connect to system
- Adjust settings
- Creating and updating loop drawings and documentation
- Isolate equipment
- Repair/replacement methods and equipment
 - Oscilloscope (Scope meter)
 - o Multimeter
 - Logic probe
- Electronic assemblies
 - o Troubleshooting to board level
 - Power supply
 - Input conditioning
 - Signal manipulation
 - Output circuit
 - Back plane
 - Board replacement procedures
 - Ground strap
 - Power down and Power Up
- Cleaning methods

Achievement Criteria

Performance The learner will be able to troubleshoot electronic equipment to board level

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): H INSTALL AND SERVICE FINAL CONTROL ELEMENTS

Competency: H2 Install and service control valves and actuators

Objectives

To be competent in this area, the individual must be able to:

• Size and select control valves and actuators.

LEARNING TASKS

- 1. Examine sizing and selection of actuators
- 2. Examine sizing and selection of control valves

Select the correct valve type and size for given

CONTENT

- Size and force required by process conditions
- Defining C_v
- Flow characteristics
 - Quick opening
 - Equal percentage
 - Linear
- Process requirements
 - Medium (Liquid/ gas/steam)
 - Pressure
 - o Flow
 - o Temperature
 - o Viscosity
 - TDH (Total Dynamic Head) and NPSH (Net Positive Suction Head)
 - Correlating pump curve
- Flashing/Cavitation
- Noise suppression
- Sizing for maximum ΔP allowable
- Perform sizing calculations (Liquid/ gas/steam)
 - o Manual (nomograph)
- Valve sizing software

Achievement Criteria

process applications

3.

Performance The learner will be able to select the correct valve type and size for process given applications

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): H INSTALL AND SERVICE FINAL CONTROL ELEMENTS

Competency: H3 Install and service valve positioners

Objectives

To be competent in this area, the individual must be able to:

- Explain the advanced diagnostics and operational capabilities of SMART positioners.
- Install, configure and service SMART valve positioners.

LEARNING TASKS

1. Examine advanced diagnostics and operational capabilities of SMART positioners

2. Install and service smart valve positioners

- · Determining valve and actuator health
 - Stiction
 - Friction
 - Hysterisis
 - Duty cycles
 - o Strokes
 - o Travel
 - o Time near closed
 - Time near open
- History
- Alarming
- Control system interface
- Offline diagnostic testing
- Mounting
- Connecting to actuator
- Connecting to process control system
- Configuring
 - o Set stroke
 - Set pressures
 - Match to actuator
 - o Autotune
- Calibrating
 - Connecting calibration and configuration instruments
 - Calibraton parameters
 - Interpretation of calibration results
 - Cause/effect of calibration errors
- Component maintenance
 - Remove
 - Replace
 - o Repair
 - o Clean
- Returning to service

Achievement Criteria

Performance The learner will be able to install, configure and service SMART valve positioners

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Level 3 Instrumentation and Control Technician

Line (GAC): C ORGANIZE WORK

Competency: C1 Plan work and maintain records

Objectives

To be competent in this area, the individual must be able to:

• Estimate labour and material and complete work-related documentation.

LEARNING TASKS

1. Examine and determine standard work requirements

2. Examine and apply related skills

3. Examine, maintain and update types of trade related documentation

- Materials
- Equipment and tools
- Personnel
- Task planning
 - Hazard assessment
 - Process hazards
 - Pressure
 - Temperature
 - Chemical
- Work scheduling
- Estimating
 - o Time
 - o Cost
 - o Materials
 - Manpower
- Identifying/organizing
 - o Tools
 - o Equipment
- Calibration sheets
- Data sheets
- Work orders
- Log entries
- Permits
- Standard Operating Procedure (SOP)
- Management of Change Documentation
 - Instrument change
 - Range change
 - Process change
- Maintenance schedules
 - Preventative
 - Predictive
 - Reliability centered
- Related software

LEARNING TASKS

CONTENT

- o Spreadsheets
- Databases
- Word processing

Achievement Criteria

Performance The learner will be able to:

- Estimate labour and material requirements
- Complete work-related documentation

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): C ORGANIZE WORK

Competency: C2 Use computers and related applications

Objectives

To be competent in this area, the individual must be able to:

 Configure and program instrumentation devices to manufacturers' specifications given related hardware, software and firmware.

LEARNING TASKS

 Use diagnostic and configuration software, hardware and firmware

2. Maintain back-up data and documentation

CONTENT

- Configuration and programming software
 - o AutoCAD
 - Fieldcare
 - Pactware
 - Valve sizing
 - o HMI
- Vijeo
- Wonderware
- Configuration and programming software
 - o AutoCAD
 - o Fieldcare
 - o Pactware
 - Valve sizing
 - o HMI
 - Vijeo
 - Wonderware

Achievement Criteria

Performance The learner will be able to configure and program software, hardware and firmware

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): C ORGANIZE WORK

Competency: C4 Use trade related diagrams, drawings and schematics

Objectives

To be competent in this area, the individual must be able to:

- Develop drawings and schematics.
- Describe symbols.
- Use P&ID/P&C/loop drawings.

LEARNING TASKS

CONTENT

- 1. Examine types of schematics and drawings
- P&ID, SAMA, isometric and orthographic drawings
- Loop drawings

2. Examine symbols and conventions

- P&ID, SAMA, isometric and orthographic drawings
- Loop drawings
- 3. Use and develop schematics and drawings
- P&ID/P&C drawings
- Loop drawings

Achievement Criteria

Performance The learner will be able to use and develop drawings and schematics
Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E9 Install and service consistency measuring devices

Objectives

To be competent in this area, the individual must be able to:

• Install, calibrate and service consistency and viscosity measuring devices.

LEARNING TASKS

1. Examine consistency and viscosity measuring devices and their operation

- 2. Examine instruments and techniques used to calibrate consistency and viscosity measuring devices
- 3. Calibrate and service consistency measuring devices

- Types (analog and SMART)
 - o Optical
 - Rotary
 - Blade
 - Microwave
 - Nuclear
 - Viscometer
- Factors affecting system performance
 - o Temperature
 - o Flow
 - o Vibration
 - o Pressure
 - o Process considerations
- Multimeters
- Calibrated weights
- Sampling and lab tests
- Manufacturers' specifications
- Selection/location factors
 - Accuracy requirements
 - Process application
 - o Process medium
 - Cost
 - o Best practices
- Verify operation
- Calibration parameters
- Device check/calibration
- Interpretation of calibration results
- Cause/effect of calibration error
- Device adjustments
- Repair/replace device components
- Returning device to service
- Documenting calibration

Achievement Criteria

Performance The learner will be able to:

- Assess consistency measuring installations to confirm best practices
- Calibrate and service consistency and viscosity measuring devices

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E10 Install and service vibration measuring devices

Objectives

To be competent in this area, the individual must be able to:

Calibrate and service vibration measuring devices using a vibration measuring system.

LEARNING TASKS

devices

1. Examine vibration measuring devices

Examine the installation, calibration and servicing requirements of vibration measuring

3. Service vibration monitoring system

CONTENT

- Probes
- Proximitors
- Transmitters
- Manufacturers' recommended maintenance procedures
- Maintenance actions
- Identifying cause of calibration errors
- Repair and cleaning of device
- Test and set up vibration monitoring system on operating process equipment

Achievement Criteria

Performance The learner will be able to calibrate and service vibration measuring devices

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E11 Install and service speed measuring devices

Objectives

To be competent in this area, the individual must be able to:

• Explain the servicing requirements of speed measuring devices.

LEARNING TASKS

- 1. Examine relevant laws & principles of physics
- 2. Examine speed measuring devices and their applications

3. Examine the installation, calibration and servicing requirements of speed measuring devices

- Speed
- Velocity
- Speed measuring devices
 - o Tachometers
 - o Probes
 - Proximitors
 - RPM counters
 - o Strobe lights
- Applications
 - Belt weightometers
 - o Belt slippage
 - o Governors
 - o Radar gun
 - o Interlock
 - Overspeed trips
- Manufacturers' recommended maintenance procedures
- Maintenance actions
- Identifying cause of calibration errors
- Repair and cleaning of device

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E12 Install and service position measuring devices

Objectives

To be competent in this area, the individual must be able to:

• Explain the servicing requirements of position measuring devices.

LEARNING TASKS

. Examine position measuring devices and their applications

2. Examine the installation, calibration and servicing requirements of position measuring devices

- Analog position sensors
 - Linear variable differential transformer (LVDT)
 - Temposonic rods
 - Proximity switches
 - o Proximity probes
 - Analog position sensors
 - o Lasers
 - Global positioning system (GPS)
- Examples of industrial applications
 - Pulp and paper
 - Oil and gas
 - Mining
 - Food Industry
- Manufacturers' recommended maintenance procedures
- Maintenance actions
- Identifying cause of calibration errors
- Bringing device within calibration parameters
- Repair and cleaning of device

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E13 Install and service motion measuring devices

Objectives

To be competent in this area, the individual must be able to:

• Explain the servicing requirements of motion measuring devices.

LEARNING TASKS

Examine motion measuring devices and their applications

2. Examine the installation, calibration and servicing requirements of motion measuring devices

- Types
 - o Torque switches
 - Proximity switches
 - o Proximity probes
 - Analog position sensors
 - o Camera
- Applications
 - o Security
 - o Safety
 - o Monitoring rig torque
- Manufacturers' recommended maintenance procedures
- Maintenance actions
- Identifying cause of calibration errors
- Bringing device within calibration parameters
- Repair and cleaning of device

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E14 Install and service process analyzers (liquids and solids)

Objectives

To be competent in this area, the individual must be able to:

Examine process liquid analyzer operational

theory and operating parameters

- Calibrate and service process liquid analyzers to process requirements.
- Explain the theory and operating parameters of process solids analyzers.

LEARNING TASKS

CONTENT

1. Examine process liquid analyzers

- pH
- Measuring electrode
- Reference electrode
- o FET electrode
- Conductivity
 - o 2 electrode
 - 4 electrode
 - o Torroidal
- Oxidation Reduction Potential (ORP)
- Specific ion
- Dissolved oxygen
- Turbidity
- Water/effluent treatment
 - Biological Oxygen Demand (BOD)
 - Chemical Oxygen Demand (COD)
 - o Silica
 - o Sodium
 - o Residual Chlorine
- X-ray fluorescence
- Non-linear scale
- Temperature effects/compensation
- Accuracy
- Repeatability
- Interaction with process
- Sources of contamination
- Sampling systems
- Conditions required
- Calibrate and service process liquid analyzers

 Manufacturers' specifications
 - Selection/location factors

2.

3.

LEARNING TASKS

- Measurement delays
- o Chemical mixing
- o Temperature requirements
- Connection to control system or indicator
- Configuration of devices
- Calibration of devices
 - Buffering solutions
 - o Calibration standards

- 4. Examine types of process solids analyzers
- Nuclear devices
- Assays
- Moisture content
- X-ray devices
- Near infra-red
- 5. Examine methods used by process solids analyzers
- Online
 - Material handling considerations
 - Interface with system
- Offline/lab test
 - o Sample/weigh/dry/weigh
 - Chemical theory
- Standards
 - o ASTM
- 6. Examine operating parameters of process solids analyzers
- Accuracy
- Repeatability
- Interaction with process
- Sources of contamination
- Sampling systems
- Conditions required
- Method used
- Brightness
- Paper sheet scanners
- Kappa (K#) analyzers
- Sulfidity
- Crossbelt analyzers
 - Gamma matrix

Achievement Criteria

Performance The learner will be able to calibrate and service process liquid analyzers

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): F INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC

EQUIPMENT

Competency: F3 Install and service pneumatic systems

Objectives

To be competent in this area, the individual must be able to:

• Align pneumatic controllers.

LEARNING TASKS

1. Examine pneumatic controllers

2. Align pneumatic controllers

CONTENT

- Force balance
- Motion balance
- Input/output calibration
- Temperature and pressure inputs
- Indication calibration
- Controller alignment and service
- Auto/manual transfer stations

Achievement Criteria

Performance The learner will be able to align pneumatic controllers

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): H INSTALL AND SERVICE FINAL CONTROL ELEMENTS

Competency: H4 Install and service variable speed drive (VSD) and variable frequency drive

(VFD)

Objectives

To be competent in this area, the individual must be able to:

Configure and test VSD and VFD.

LEARNING TASKS

CONTENT

1. Examine basic operation of VSD and VFD

- Operation
 - Tuning parameter identification
 - o Signal isolation DCS/VFD
- Control of speed
 - o Eddy Current Coupling (ECC)
 - o Hydraulic speed control
 - Input signals (digital and analog)

- 2. Test operation of a VSD/VFD
- 3. Examine interaction of PID tuning and VSD configuration
- Set up and test a VSD/VFD
- PID control in PLC/DCS with configuration parameters in VSD

Achievement Criteria

Performance The learner will be able to configure and test VSD and VFD

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): I INSTALL AND SERVICE COMMUNICATION SYSTEMS AND DEVICES

Competency: I1 Install and service control network systems

Objectives

2.

To be competent in this area, the individual must be able to:

• Explain the basic structures and components of communication networks.

LEARNING TASKS

1. Examine hardware layers

Examine network connectors

3. Troubleshoot wired signal transmission systems

- Network switches (routers)
 - Configurable
 - o Nonconfigurable
 - Firewalls
 - o Hubs
- Gateways
 - Protocol interface
 - Media interface
 - Network isolation
- Hardware topologies
 - o Rapid spanning tree
 - Self-healing rings
 - o Star
- Types of connectors
 - o USB
 - o Firewire
 - o 9 pin, 25 pin serial port
 - o RJ45
 - o RJ11
 - o M12
 - o M10
 - o BNC
 - Cannon plugs
- Resistance and Environmental Standards
 - o IP standards (IP67)
 - Current loops
 - o 4-20 mA loops (HART)
- Digital buses (at least one of the following):
 - Foundation Fieldbus
 - o Profibus
 - Device net

LEARNING TASKS

systems

Troubleshoot wireless signal transmission

CONTENT

- Software configuration
 - o FDT (Field Device Tool)
- Performing system diagnostics
- Troubleshooting installation problems/ deficiencies
 - o Testing cable
 - Manipulating process to allow for servicing
 - Removing/replacing components
- Upgrading software and firmware
- Signal strength requirements
 - Batteries
- Potential causes of interference
- Performing system diagnostics
- Troubleshooting installation problems/ deficiencies
 - Manipulating process to allow for servicing
 - Removing/replacing components
- Upgrading software and firmware
- Networks
 - o Line of sight
 - o Spanning tree
 - Interface to DCS

Achievement Criteria

Performance The learner will be able to troubleshoot wired and wireless signal transmission systems

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): I INSTALL AND SERVICE COMMUNICATION SYSTEMS AND

DEVICES

Competency: I3 Install and service gateways, bridges and media converters

Objectives

To be competent in this area, the individual must be able to:

• Explain the features and limitations on specified communication protocols.

LEARNING TASKS

1. Examine types of signal transmission systems

2. Examine features and limitations of communication protocols

- Fibre optics
 - Armoured cable
 - Non-armoured cable
 - Multimode/single mode transmission
- Wired
 - o Coax
 - Unshielded Twisted Pair (UTP)
- Types of protocols
 - o RS232
 - o RS422/485
 - o MODBUS
 - o MODBUS+
 - o ASi BUS
 - Device Net
 - Profibus
 - Highway Addressable Remote Transducer (HART)
 - o Frequency Shift Keying (FSK)
 - o Foundation Fieldbus
 - Spread spectrum
 - Ethernet TCP/IP
- Addressing methods and components
- Potential sources of interference
- Related standards, codes, licenses

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL

Competency: J1 Establish and optimize process control strategies

Objectives

To be competent in this area, the individual must be able to:

- Explain the basic operation of common industrial processes.
- Calibrate and tune industrial control loops.
- Diagnose process control problems on a live process.

LEARNING TASKS

1. Examine common industrial processes

CONTENT

- Basic oil & gas field processes
 - Raw gas processing
 - Compression
 - Dehydration
- Material handling/quality control
 - Pulp consistency control process
- Separation
 - o Magnets
 - o Screening
 - Centrifugal
 - o Electrostatic
- Concrete plant
- Food
- Pharmaceuticals
- Chemical reaction
 - o pH
 - Electrolytic
 - Water and waste water treatment
- Evaporation
- Flotation
- 2. Calibrate and tune industrial instrumentation for
 - common industrial processes

- Multiple effect evaporation
- Material handling/quality control
 - Pulp consistency control process
- Chemical reaction
 - o pH
 - Conductivity
- Operate processes and troubleshoot control problems.

 Multiple effect evaporation
 - Material handling/quality control

3.

LEARNING TASKS

CONTENT

- Pulp consistency control process
- Chemical reaction
 - o pH
 - o Conductivity

Achievement Criteria

Performance The learner will be able to:

- Calibrate and tune industrial control loops
- Diagnose process control problems on a live process

Conditions

As part of practical lab tasks, given the required tools, materials and live process equipment

Criteria

Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL

Competency: J2 Install and service stand-alone controllers (SAC)

Objectives

To be competent in this area, the individual must be able to:

• Explain basic control theory, actions and operational modes.

LEARNING TASKS

- 1. Examine basic control theory
- 2. Examine control modes

- 3. Examine controller action
- 4. Examine controller operating modes

CONTENT

- Set point/process variable/ manipulated variable
- Relation of output to input
- Steady state value and dynamic component
- Control loop gains/loop stability
- On/off control
- Differential Gap
- Proportional only
- Integral only
- Proportional plus Integral
- PID -Proportional, Integral, Derivative
 - Reset rate/reset time
 - Series/parallel
 - o Interactive/non-interactive/ rate on PV
- Direct acting
- Reverse acting
- Automatic
- Manual
- Remote
- Local
- Supervisory

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL

Competency: J3 Install and service programmable logic controllers (PLC)

Objectives

To be competent in this area, the individual must be able to:

- Program PLC in ladder logic.
- Troubleshoot various PLC, given appropriate instructional materials.

LEARNING TASKS

CONTENT

1. Review PLC languages and symbols

- IEC Standard 61131-3 Programming Languages
 - o Instruction List (IL)
 - Structured Text (ST)
 - Ladder Diagram (LD)
 - Function Block Diagram (FBD)
 - Sequential Function Chart (SFC)
- 2. Examine, create and troubleshoot industrial PLC installations
- Hardware
- Assembly
- Configuration
- I/O addressing
- Programming
 - o Ladder logic
- Data Tables
- User Programs
- 3. Examine and troubleshoot PLC components
- CPU
- Memory organization
- Input interface
- Output interface
- Power supply
- Programming/monitoring interface
- Network communication module
- Back up and document PLC data for future

 Back up and document programming
 - Configuration
 - Settings
 - Parameters

Achievement Criteria

recovery

4.

Performance The learner will be able to:

• Program PLC in ladder logic

• Troubleshoot PLC industrial installations and components

Conditions

As part of practical lab tasks, given the required tools and materials

Criteria

Tasks must be performed within specifications, safety standards and time frames acceptable

INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS Line (GAC): I CONTROL

Competency: J4 Install and service human machine interface (HMI)

Objectives

To be competent in this area, the individual must be able to:

Program HMI software to communicate with a PLC or DCS.

LEARNING TASKS

CONTENT

1. **Examine HMI** Software/hardware design and capability

> Compatibility with other process control systems

> Communication networks and protocols

Tag descriptors and addressing

Consistency issues in programming

Alarm priorities

Read/write issues

Access/security issues

Communications systems used

Interaction with PLC, DCS

Program graphical representation of a process

Program HMI software to communicate

with a PLC

Build HMI software to interface with PID

control and motor control in PLC

3. Back up and document HMI data for future

recovery

Program HMI software

Back up and document programming

Configuration

Communication settings

Achievement Criteria

Performance The learner will be able to program HMI software to communicate with a PLC or DCS

Conditions As part of practical lab tasks, given the required tools and materials

Tasks must be performed within specifications, safety standards and time frames acceptable Criteria

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS

CONTROL

Competency: J7 Install and optimize advanced supervisory control systems

Objectives

To be competent in this area, the individual must be able to:

• Perform process optimization for an advanced supervisory control system.

LEARNING TASKS

1. Examine and diagnose safety instrumented systems (SIS)

CONTENT

- SIL levels
- Voting structures
- Documentation

Level 4 Instrumentation and Control Technician

Line (GAC): C ORGANIZE WORK

Competency: C2 Use computers and related applications

Objectives

To be competent in this area, the individual must be able to:

 Configure and program instrumentation devices to manufacturers' specifications given related hardware, software and firmware.

LEARNING TASKS

Examine diagnostic and configuration software, hardware and firmware

Use diagnostic and configuration software,

hardware and firmware

CONTENT

- Types
 - SMART communicators
 - SMART calibrators
 - Various PC programs
- Configuration and programming software
 - o IACC (Foxboro)
 - Unity (Schneider)
 - o Control Logix (Allen Bradley)
 - o Delta V (Emerson)
- Configuration and programming software
 - o IACC
 - o Unity
 - Control Logix
 - o Delta V

Achievement Criteria

Performance The learner will be able to configure and program hardware and firmware

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): C ORGANIZE WORK

Competency: C4 Use trade related diagrams, drawings and schematics

Objectives

To be competent in this area, the individual must be able to:

• Create basic schematics and drawings.

LEARNING TASKS

CONTENT

1. Create and modify basic drawings

- Electronic drawingAutoCAD
- P&ID and SAMA drawings
- Loop drawings

Achievement Criteria

Performance The learner will be able to produce a loop sheet drawing

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): D USE COMMUNICATION AND MENTORING TECHNIQUES

Competency: D2 Use mentoring techniques

Objectives

To be competent in this area, the individual must be able to:

• Explain mentoring techniques.

LEARNING TASKS

1. Describe effective mentoring techniques

Describe learning strategies

2.

3. Describe outcomes of effective coaching

CONTENT

- Verbal
- Non-verbal
 - o Body language
 - o Signals
- Active listening
 - o Hearing
 - o Interpreting
 - Reflecting
 - Responding
 - Paraphrasing
- Personal responsibilities
 - o Attitude
 - Harassment
 - Descrimination
- Coaching
- Practice
- Assessing
 - Feedback
 - Correcting
- Reinforcement
- Responsibilites
- Punctuality
- Safety
- Collaboration

Line (GAC): E INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E14 Install and service process analyzers (Gas)

Objectives

To be competent in this area, the individual must be able to:

- Calibrate and service gas chromatographs.
- Calibrate and service flue gas analyzers.

TEA	DATE	JG TA	CKC
I P.A	KINII	VLT I A	.71.7

- 1. Examine gas chromatographs
- 2. Examine gas chromatograph operational theory
- 3. Examine operating parameters of gas chromatographs

4. Examine the installation, calibration and servicing of process gas chromatographs

5. Calibrate and service gas chromatographs

CONTENT

- · Gas analysis
- Methane, Ethane, Propane, Butane, etc.
- Sulfur species
- Chromatography
- Flame Ionization detector (FID)
- Photo Ionization detector (PID)
- Thermal Conductivity detector
- Accuracy
- Repeatability
- Interaction with process
- Sources of contamination
- Sampling systems
 - o In situ
 - Extractive
- Conditions required
- Manufacturers' specifications
- Selection/location factors
- Connection to control system or indicator
- Configuration of devices
- Alarming methods
- Calibration of devices
- Laptop/software
- Test gas selection and storage
- Manufacturers' specifications
- Selection/location factors
- Connection to control system or indicator
- Configuration of devices

LEARNING TASKS

6. Examine flue gas analyzers

- 7. Examine flue gas analyzer operational theory
- 8. Examine operating parameters of flue gas analyzers

9. Calibrate and service process flue gas analyzers

CONTENT

- Alarming methods
- Calibration of devices
 - Laptop/software

Test gas selection and storage

- Online
 - o Excess oxygen
 - o CO
 - o Particulate/opacity
 - o TRS
 - o NOX
 - o SOX
- Offline
 - o Orsat
 - o Fyrite
- Thermo-paramagnetic
- Zirconium oxide
- Catalytic combustibles detector
- Infrared laser
- Accuracy
- Repeatability
- Interaction with process
- Sources of contamination
- Sampling systems
 - o In situ
 - Convective
 - Close-coupled extractive
 - Extractive
- Manufacturers' specifications
- Selection/location factors
- Connection to control system or indicator
- Configuration of devices
- Alarming methods
- Calibration of devices
 - o Laptop/software
- Test gas selection and storage

Achievement Criteria

Performance The learner will be able to calibrate and service:

• Process gas chromatographs

• Flue gas analyzers

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): Ε INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES

Competency: E15 Install and service multiple variable computing devices

Objectives

To be competent in this area, the individual must be able to:

- Configure a multivariable steam or natural gas flow metering system.
- Explain the purpose and application of a temperature compensated vortex steam flow meter.

LEARNING TASKS

CONTENT

Examine multivariable flow meters

- Operation of multivariable flow meters
 - Mass steam flow
 - Mass air flow
 - Temperature compensated vortex steam flow (volumetric to mass)
 - Floboss meters for natural gas custody transfer
 - Pressure and temperature compensated natural gas turbine flow measurement

- Configure (calibrate) multivariable flow meters 2.
- Calibration/certification of multivariable transmitters
 - Mass steam flow
 - Mass air flow 0
 - Temperature compensated vortex steam flow (volumetric to mass)
 - Floboss meters for natural gas custody transfer
 - Pressure and temperature compensated natural gas turbine flow measurement

Achievement Criteria

Performance The learner will be able to:

- Configure (program) multivariable transmitters
- Certify the accuracy of a multivariable transmitter

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): I INSTALL AND SERVICE COMMUNICATION SYSTEMS AND

DEVICES

Competency: I1 Install and service control network systems

Objectives

To be competent in this area, the individual must be able to:

• Explain the basic structures and components of communication networks.

LEARNING TASKS

1. Explain types of networking

Configure network addressing

- 3. Test network communications
- 4. Install and configure wireless systems

CONTENT

- Serial networks
- Ethernet
- Wireless networks
- Serial
- Ethernet
- Wireless
- Send and receive data
 - o Protocols
 - Serial
 - Ethernet
 - Wireless
- Satellite
- Cellular
- Bluetooth
- RF
- IR
- IEEE standards

Achievement Criteria

Performance The learner will be able to troubleshoot wired and wireless signal transmission systems.

Conditions As part of practical lab tasks, given the required tools and materials.

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): I INSTALL AND SERVICE COMMUNICATION SYSTEMS AND

DEVICES

Competency: I2 Install and service signal converters

Objectives

To be competent in this area, the individual must be able to:

• Calibrate and service signal conditioners (A/D and D/A) to process requirements.

LEARNING TASKS

- 1. Explain the operations of signal conversion
- 2. Test and certify the operation

CONTENT

- Digital to analog converters
- Analog to digital converters
- Test the operation of a D/A converter
- Test the operation of an A/D converter

Achievement Criteria

Performance The learner will be able to calibrate and service signal conditioners

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): I INSTALL AND SERVICE COMMUNICATION SYSTEMS AND

DEVICES

Competency: I3 Install and service gateways, bridges and media converters

Objectives

To be competent in this area, the individual must be able to:

- Explain the features and limitations on specified communication protocols.
- Configure and test communication protocols.

LEARNING TASKS

- 1. Explain the operation of gateways, bridges, media converters, routers and switches
- Configure switches and routers as required; connect and test connections to and from hosts and slaves

CONTENT

- Ethernet connections
- Serial connections
- Test and confirm network
- Test and confirm communications

Achievement Criteria

Performance The learner will be able to configure and test communication protocols

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL

Competency: J1 Establish and optimize process control strategies

Objectives

To be competent in this area, the individual must be able to:

- Explain the operation of common industrial processes using advanced control strategies.
- Calibrate and tune industrial control loops.
- Diagnose process control problems on a live process.

LEARNING TASKS

CONTENT

- 1. Examine industrial instrumentation for advanced control systems with industrial processes
- Steam generation (boilers)
- Batch process
 - o Digester
- Distillation
 - Fractionation
 - Binary tower
 - Cryogenic
 - LNG
- 2. Calibrate and tune industrial instrumentation for advanced control systems with industrial processes
- Steam generation (boilers)
- Batch process
 - Digester
- Distillation
 - o Fractionation
 - Binary tower

- 3. Operate processes and troubleshoot advanced control systems
- Steam generation (boilers)
- Batch process
 - o Digester
- Distillation
 - Fractionation
 - Binary tower

Achievement Criteria

Performance The learner will be able to:

- Calibrate and tune industrial control loops
- Diagnose process control problems on a live process

Conditions Criteria As part of practical lab tasks, given the required tools, materials and live process equipment Tasks must be performed within specifications, safety standards and time frames acceptable to industry, and the learner must achieve a minimum grade of 70%

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS

CONTROL

Competency: J2 Install and service stand-alone controllers (SAC)

Objectives

To be competent in this area, the individual must be able to:

- Explain advanced control theory, actions and operational modes.
- Apply advanced control applications using microprocessor-based controllers.

LEARNING TASKS

1. Examine stand-alone controllers

CONTENT

- Microprocessor
 - Single loop
 - Cascade loop
- I/O
- o HART
- Electronic
- Installation requirements
 - Ambient temperature
 - o Area classification

2. Configure stand-alone controller

- Maintenance
- Configuration
 - o Techniques
 - Tools
 - Handheld programmers
 - Software

Achievement Criteria

Performance The learner will be able to configure stand-alone controllers for various control strategies

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS

CONTROL

Competency: J3 Install and service programmable logic controllers (PLC)

Objectives

To be competent in this area, the individual must be able to:

- Program PLC in FBD.
- Program PLC in SFC.
- Troubleshoot PLC.

LEARNING TASKS

1. Configure PLC

CONTENT

- Configuration of analog plus discrete logic control strategies using both of the following IEC 61131-3 standard programming languages:
 - o FBD
 - o SFC
- Software interface
- Operation
- Troubleshooting
- SIS systems
- Back up and document programming
 - o Configuration
 - Settings
 - o Parameters

Achievement Criteria

recovery

Performance The learner will be able to:

Configure a PLC

Back up and document PLC data for future

• Program in FBD and SFC languages

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL

Competency: Install and service human machine interface (HMI) J4

Objectives

To be competent in this area, the individual must be able to:

- Configure HMI operator graphics.
- Program HMI software to communicate with a PLC or DCS.

LEARNING TASKS	CONTENT
----------------	---------

1.	Examine HMI	HMI • Software/hard	
			capability

- Compatibility with other process control systems
- Communication networks and protocols
- Tag descriptors and addressing
- Consistency issues in programming
- Alarm priorities
- Read/write issues
- Access/security issues
- Communications systems used
- Interaction with PLC/DCS
- Program graphical representation of a process
 - Program HMI software to communicate with a PLC
 - Build HMI software to interface with PID control and motor control in PLC
- Back up and document HMI data for future 3. recovery

Program HMI software

- Back up and document programming configuration
- Communication settings

Achievement Criteria

Performance The learner will be able to:

- Create HMI operator graphics
- Program HMI software to communicate with a PLC or DCS

Conditions As part of practical lab tasks, given the required tools and materials

Tasks must be performed within specifications, safety standards and time frames acceptable Criteria

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS

CONTROL

Competency: J5 Install and service distributed control systems (DCS)

Objectives

To be competent in this area, the individual must be able to:

• Configure DCS equipment.

LEARNING TASKS

1. Examine DCS

CONTENT

- DCS
 - o Emerson
 - o Schneider (Foxboro)
 - o Honeywell
- System configuration
- LAN communication protocols
- Hardware components
- Configuration software
- Troubleshooting
- Operator console and diagnostic tools
 - Analog and discrete input and output signals
 - o Tunable parameters in software blocks
- SIS systems
- Build and troubleshoot a cascade control system (including operator interface graphics)
- Configure and troubleshoot analog inputs, analog outputs, control loops and pump stop/start

2.

Configure DCS

Achievement Criteria

Performance The learner will be able to configure and troubleshoot a DCS

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL

Competency: J6 Install and service supervisory control and data acquisition (SCADA)

Objectives

To be competent in this area, the individual must be able to:

- Explain SCADA protocols, configurations, equipment and servers.
- Program and service SCADA systems.

LEARNING TASKS

1. Examine types of SCADA protocols and configurations

- 2. Examine types of SCADA equipment and servers for data acquisition and storage
- 3. Service SCADA systems

CONTENT

- Applications
 - Custody transfer
 - AGA/API calculations
- Online history
- Remote equipment operation
- Time synchronization and time stamping
- Network layout
 - o Protocols
 - o Host
 - o Field
- · Addressing methods
- Configuration licensing
- Radio Telemetry Units (RTU)
- Wireless communications systems
 - o Cellular
 - Satellite
 - o Radio
- Manipulating process to allow for servicing
- Alerting operations
- Transferring from automatic to manual
- Awareness of impact on process
- Maintaining on site software/firmware revisions and data backups
- · Performing system diagnostics
- Testing SCADA components
- Maintaining host integrity
- Installation problems and deficiencies
- Develop logic strategies

Achievement Criteria

Performance The learner will be able to program and service SCADA systems

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): J INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL

Competency: J7 Install and optimize advanced supervisory control systems

Objectives

To be competent in this area, the individual must be able to:

• Perform process optimization for an advanced supervisory control system.

LEARNING TASKS

- Examine Batch Process Control
- 2. Examine Batch Process Control and compare to other control applications and strategies
- 3. Examine Batch Process Control software in use

4. Examine and tune boiler control systems

5. Examine other advanced supervisory control systems

CONTENT

- Operation and application of Batch Process Control
- Continuous
- Discontinuous
- DCS and PLC
- Applications (examples)
 - Batch pulp digester process
 - o Cement plant
 - o Oil pipeline transmission
 - o Chemical industry
 - Food plant
- Combustion control systems
 - Parallel open/closed loop
 - Cross limited
- Application of excess oxygen trim control
- Plant Master vs. Boiler Master controls
- Application of feedforward control indexing to Plant Master pressure controller
- Steam temperature attemporator
- Conventional desuperheater control
- 2, 3 and 5 element drum level control
- Balanced draft furnace pressure control
 - o FD and ID fans
- Predictive control techniques
 - Smith Predictors
 - Model Predictive Control (MPC)
 - Horizon Predictive Control

Achievement Criteria

Performance The learner will be able to tune boiler control systems

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): K INSTALL AND SERVICE SAFETY SYSTEMS AND DEVICES

Competency: K1 Install and service safety systems and devices

Objectives

To be competent in this area, the individual must be able to:

- Troubleshoot flame detection equipment.
- Service flame safety systems.
- Explain the operation of process cameras and their applications.
- Explain the types of Emergency Shutdown Devices (ESD), their purposes and testing procedures.

LE.	ARNING TASKS	CONTENT
1.	Examine flame detection equipment	 Ultraviolet Infrared Magnetic Rate of rise Heat sensors (thermopile) Ionic
2.	Examine operation of flame safety systems	 Acceptable limits Technical Safety BC regulatory requirements Accuracy Shut down Procedures Actions Implications Applications BMS Flare stacks
3.	Troubleshoot flame detection equipment	 Manufacturers' specifications and recommendations Selecting required equipment Connecting to process/indicator Configuring Calibrating Alarming

4.

Examine process camera applications

Leak monitoring Fire monitoring Intruder alert

Remote monitoring

Process control

LEA	ARNING TASKS	CONTENT
		Quality controlSafety
5.	Examine the operation of process cameras	Analog and Digital
		Manufacturers' specifications and recommendations
		Selecting required equipment
		 Connecting to process/indicator
		 Configuring
		 Calibrating
		 Alarming
6.	Examine types of ESD control systems	• Levels of shutdown
		o Equipment shutdown
		 Area shutdown
		 Total/Plant shutdown
		 Types of ESD
		 Electric
		o Pneumatic
		 Hydraulic
		 Mechanical
7.	Examine purposes of different types of ESD	 Personnel protection
		 Environmental protection
		 Equipment protection
8.	Examine ESD testing procedures	Partial stroke test
		• Time test
		Valve integrity
		Interlock checks (system shut down check)

Achievement Criteria

Performance The learner will be able to:

- Troubleshoot flame detection equipment
- Troubleshoot Burner Management Systems (BMS)

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

check)

Line (GAC): K INSTALL AND SERVICE SAFETY SYSTEMS AND DEVICES

Competency: K2 Install and service safety instrumented systems (SIS)

Objectives

To be competent in this area, the individual must be able to:

• Diagnose Safety Instrumented Systems (SIS)

LEARNING TASKS

- 1. Review, examine and diagnose safety instrumented systems (SIS)
- 2. Examine Fire & Gas (F&G) safety systems

CONTENT

- SIL levels
- Voting structures
- Documentation
- Functionality tests
 - Calibrate sensors
 - Test safety functions

Achievement Criteria

Performance The learner will be able to:

- Diagnose F&G safety systems and sensors
- Troubleshoot F&G safety systems and sensors

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Line (GAC): K INSTALL AND SERVICE SAFETY SYSTEMS AND DEVICES

Competency: **K**3 Install and service environmental monitoring devices

Objectives

To be competent in this area, the individual must be able to:

Install, configure and calibrate monitoring devices to process safety requirements.

LEARNING TASKS

- Examine types of hazardous gases and particulates to be monitored
- CONTENT
 - Classes and groups of gases
 - Terms and definitions for hazardous gases
 - LEL/HEL (Low/High Explosive Limit)
 - PEL (Personnel Exposure Limit)
 - **Monitored Gases**
 - H2S
 - CO 0
 - Cl2
 - SOX 0
 - NOX
 - TRS (Total Reduced Sulphur)
 - **Particulates**
 - Protection
 - Personnel
 - Equipment
 - **Environment**

Examine types of detection equipment for 2. hazardous gases

Examine operation of monitoring systems

3.

- Infrared
- Catalytic bead
- Electro-chemical cell
- Lead acid strip
- Other technologies
- Acceptable limits
- Accuracy limitations
- Shut down
 - 0 **Procedures**
 - Actions
 - **Implications**

- Install, configure and calibrate monitoring devices
- Manufacturers' specifications
- Selection/location factors
- Connection to control system or indicator

LEARNING TASKS

CONTENT

- Configuration of devices
- Alarming methods
- Calibration of devices
 - Laptop/software
 - o Test gas selection and storage
- Documenting calibration

Achievement Criteria

Performance The learner will be able to calibrate and service environmental monitoring devices

Conditions As part of practical lab tasks, given the required tools and materials

Criteria Tasks must be performed within specifications, safety standards and time frames acceptable

Section 4 ASSESSEMENT GUIDELINES

Assessment Guidelines - Level 1

Level 1 Grading Sheet: Subject Competency and Weightings

	PROGRAM: INSTRUMENTATION AND CONTROL TECHNICIAN LEVEL 1					
LINE	SUBJECT	THEORY WEIGHTING	PRACTICAL WEIGHTING			
A	PERFORM SAFETY RELATED FUNCTIONS		3%	3%		
В	USE TOOLS AND EQUIPME	ENT	3%	3%		
С	ORGANIZE WORK		5%	5%		
D	USE COMMUNICATION AN	ND MENTORING TECHNIQUES	2%	2%		
Е	INSTALL AND SERVICE PR INDICATING DEVICES	OCESS MEASURING AND	15%	15%		
F	INSTALL AND SERVICE PNEUMATIC AND HYDRAULIC EQUIPMENT		8%	8%		
G	INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC EQUIPMENT		30%	30%		
Н	INSTALL AND SERVICE FINAL CONTROL ELEMENTS		28%	28%		
J	INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL		6%	6%		
		Total	100%	100%		
In-school theory / practical subject competency weighting			65%	35%		
Final in-school percentage score			IN-SCF	HOOL %		
In-school Percentage Score Combined theory and practical subject competency multiplied by			8	0%		
Standard Level Exam Percentage Score The exam score is multiplied by			2	0%		
Final Percentage Score			FIN	IAL%		

Assessment Guidelines - Level 2

Level 2 Grading Sheet: Subject Competency and Weightings

PROGRAM: INSTRUMENTATION AND CONTROL TECHNICIAN LEVEL 2					
LINE	LINE SUBJECT COMPETENCIES			THEORY WEIGHTING	PRACTICAL WEIGHTING
A	PERFORM SAFETY RELATE	D FUNCTIONS		1%	1%
С	ORGANIZE WORK			5%	5%
Е	INSTALL AND SERVICE PR INDICATING DEVICES	OCESS MEASURING AND		44%	44%
F	INSTALL AND SERVICE PN EQUIPMENT	EUMATIC AND HYDRAULIC		10%	10%
G	INSTALL AND SERVICE ELECTRICAL AND ELECTRONIC EQUIPMENT		30%	30%	
Н	INSTALL AND SERVICE FINAL CONTROL ELEMENTS		10%	10%	
	Total		100%	100%	
In-scho	In-school theory / practical subject competency weighting			65%	35%
Final in-school percentage score				IN-SCI	IOOL %
In-school Percentage Score Combined theory and practical subject competency multiplied by			0%		
Standard Level Exam Percentage Score The exam score is multiplied by				20%	
Final Percentage Score				FIN	AL%

Assessment Guidelines - Level 3

Level 3 Grading Sheet: Subject Competency and Weightings

PROGRAM: INSTRUMENTATION AND CONTROL TECHNICIAN LEVEL 3				
LINE	LINE SUBJECT COMPETENCIES		THEORY WEIGHTING	PRACTICAL WEIGHTING
С	ORGANIZE WORK		5%	5%
Е	INSTALL AND SERVICE PR INDICATING DEVICES	OCESS MEASURING AND	35%	35%
F	INSTALL AND SERVICE PN EQUIPMENT	EUMATIC AND HYDRAULIC	2%	2%
Н	INSTALL AND SERVICE FIN	NAL CONTROL ELEMENTS	5%	5%
I	INSTALL AND SERVICE COMMUNICATION SYSTEMS AND DEVICES		10%	10%
J	INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL		43%	43%
		Total	100%	100%
In-scho	In-school theory / practical subject competency weighting			35%
Final in-school percentage score			IN-SCI	HOOL %
In-school Percentage Score Combined theory and practical subject competency multiplied by			80%	
Standard Level Exam Percentage Score The exam score is multiplied by			20%	
Final Percentage Score			FIN	IAL%

Assessment Guidelines - Level 4

Level 4 Grading Sheet: Subject Competency and Weightings

		INSTRUMENTATION AND CONTROL TECHNICIAN LEVEL 4		
LINE	SUBJECT COMPETENCIES		THEORY WEIGHTING	PRACTICAL WEIGHTING
С	ORGANIZE WORK		2%	2%
D	USE COMMUNICATION AN	ND MENTORING TECHNIQUES	3%	3%
Е	INSTALL AND SERVICE PROCESS MEASURING AND INDICATING DEVICES		10%	10%
I	INSTALL AND SERVICE COMMUNICATION SYSTEMS AND DEVICES		10%	10%
J	INSTALL AND SERVICE CONTROL SYSTEMS AND PROCESS CONTROL		60%	60%
K	INSTALL AND SERVICE SAFETY SYSTEMS AND DEVICES		15%	15%
	Total		100%	100%
In-scho	In-school theory / practical subject competency weighting			43%
Final in-school percentage score Apprentices must achieve a minimum 70% as the final in-school percentage score to be eligible to write the Interprovincial Red Seal exam.			IN-SCF	HOOL %

All apprentices who complete Level 4 of the Instrumentation and Control Technician program with a FINAL level percentage score of 70% or greater will write the Interprovincial Red Seal examination as their final assessment.

SkilledTradesBC will enter the apprentices' Instrumentation and Control Technician Interprovincial Red Seal examination percentage score into SkilledTradesBC Portal.

A minimum percentage score of 70% on the examination is required for a pass.

Section 5 TRAINING PROVIDER STANDARDS

Facility Requirements

General Areas

- Cleaning supplies
- Compliance with all local and national fire code and occupational safety requirements
- Adequate lighting
- · Heating/air conditioning for comfort all year round
- 120 volt AC

Classroom Area (General Area requirements plus the following)

- Comfortable seating and tables suitable for training, teaching, and lecturing
- Lighting controls to allow easy visibility of projection screen while also allowing students to take notes
- · Windows must have shades or blinds to adjust sunlight
- · Heating/air conditioning for comfort all year round with room-specific control
- · Acoustics in the room must allow audibility of the instructor
- White marking board with pens and eraser
- Projection screen or projection area at front of classroom
- Document camera and/or multi-media projector

Shop Area (General Area requirements plus the following)

- Lifting devices
 - o Overhead cranes, hydraulic lifts
- Workbenches with 6" vices
- Instrument air supply
- Water supply (100 psig)

Lab Requirements

All Levels

- Communication and Signal transmission instrumentation and final control equipment
- Measurement recorders and indicators including motion, speed, vibration, position, mass flow, pH, temperature, pressure, weight, level
- Multiple computer stations with interfacing options
- Resource computer with internet access
- Instrument air supply

Level 1

"Instruction list" Programmable Logic Controllers (e.g., Omron, Westinghouse, Schneider)

Level 2

 "Instruction list Programmable Logic Controllers (e.g., Omron, Westinghouse, Schneider)

SKILLED TRADESBC

Training Provider Standards Section 5

Access to a radiation source that may be used for level or density measurement

Level 3

- Fully operational, representative process-equipment with supporting instrumentation and control equipment (e.g., distillation column, evaporator and power boiler, pulp stock digester, mineralization)
- Installed control system (e.g., Fisher Delta V)
- Stand alone controllers, pneumatic
- Software-loadable Programmable Logic Controllers (e.g., Schneider, GE/Fanuc, AB)
- Distributed Control Systems (e.g., Schneider Foxboro IA, Delta V, ABB)
- Access to a radiation source that may be used for level or density measurement

Level 4

- Fully operational, representative process-equipment with supporting instrumentation and control equipment (e.g., distillation column, evaporator and power boiler, pulp stock digester, mineralization)
- Installed control system (e.g., Fisher Delta V)
- Stand alone controllers, electronic (e.g., F&P MC-5000)
- PC-based advanced control software (e.g., Brainwave)
- Software-loadable Programmable Logic Controllers (e.g., Schneider, GE/Fanuc, AB)
- Distributed Control Systems (e.g., Schneider Foxboro IA, Delta V, ABB)
- SCADA systems (e.g., Bristol, Fisher, Schneider)
- Access to a radiation source that may be used for level or density measurement

Student Facilities

- Adequate lunch room as per WorkSafeBC requirements
- Adequate washroom facilities as per WorkSafeBC requirements
- Personal storage lockers

Instructor's Office Space

Private seating space sufficient for 3 people (separate from training space)

Other

• Not applicable

Tools and Equipment

Shop Equipment

Power Tools

Required

- Air compressor
- Drill press
- Grinders
- Heat gun

Recommended

- Cutoff saw
- High pressure grease gun
- Hydraulic press
- Impact wrench

- Portable electric drill
- Pressure and vacuum pumps
- Soldering iron with appropriate ventilation
- Powder actuated tools (hilti, ramset, etc.)
- Pneumatic tools

Pipe threader

Electronic Tools and Test Equipment

Required

- Amp probe
- Analog multimeter
- Flue gas analyzers (complete with Ringelmann chart)
- Gas chromatograph
- Barometer
- **Bridges**
- Calibrated oven
- Capacitance simulator
- Current calibrator
- Data logger
- Deadweight tester (hydraulic and pneumatic)
- Decade resistance box
- Deflectional-type strain indicator
- Dew point tester
- Digital multimeter
- Dry block calibrator
- Electromagnetic flowmeter
- Electrostatic voltmeter
- Ethernet network kit
- Frequency counter
- Frequency generator
- Gauge blocks

- Millivoltmeter calibrator
- Modem
- Null balance strain indicator
- Optical pyrometer
- Oscilloscope
- pH simulator/buffers
- Pneumatic test stand
- Portable sound level meter
- Portable voltage tester
- Potentiometer
- Power supplies
- Pressure/vacuum calibrator
- **Printers**
- Protocol analyzer
- Radiation meter
- Regulator
- Rpm tester/tachometer
- Rtd/thermocouple calibrator
- Signal generator
- Signal analyzer
- Sling psychrometer
- Software

- Hand held programmer (configurator)
- · Hand held pyrometer
- Hydrometer
- Infrared thermometer
- Lab scales
- Label maker
- Laptop computer
- Logic testers
- Loop calibrator/simulator
- Manometer (well and incline)

Recommended

- Eddy current tachometer
- Laser strength meter
- Microwave leakage meter

- Tachometer generator
- Temperature bath
- · Test gases
- Test gauges (pressure, vacuum)
- Thermal meter
- Thermometer
- Variable transformer
- Vibration table (wobbulator)
- Wrist ground strap
- Stroboscope
- Wireless signal strength tester

Student Tools (supplied by student)

NOTE: check with training provider for student equipment and tools

Required

Steel-toed boots

Recommended

- Coveralls
- Fluke 789 process calibrator or equivalent
- Electronic kit c/w breadboard (purchase from school has required components for labs)

Reference Materials

Introduction

The amount of technical data and the rate of technological innovation confronting workers in this trade are extremely high. Manufacturers who formerly maintained in-house publishing operations (due to the sheer quantity of specialized technical information associated with their products) have now moved to providing technical information in on-line and/or CD formats, in order to reduce costs associated with frequent revisions and updates to technical materials. The implications for the development of trade training materials are clear: there is potential for rapid redundancy of information and a need for constant Subject Matter Expert-led evaluation of curriculum.

As well, there are almost infinite variations in the technologies of industrial instrumentation. The focus of BC ICT training is on the technologies *most prevalent* in the industries of this province. This approach has served industry well. Apprentices are prepared to work with the most current BC technologies and also capable of dealing with the older systems sometimes encountered in the oil and gas fields. Training materials should support a "BC first" focus, while enabling apprentices to successfully challenge the IP exam for this trade.

MATERIALS IN PRINT

• Canadian Electrical Code, Part 1, most current edition.

McMillan, Gregory K.
 Vickers, Incorporated Training
 Center
 Advanced temperature measurement and control
 Closed loop electrohydraulic systems manual

Warren, John E. Control instrument mechanisms
 Coggan, Donald A. Fundamentals of industrial control

Parr, E.A. Hydraulics and Pneumatics
 Eaton Corporation Industrial Hydraulics manual
 Eaton Corporation Industrial Hydraulics answer book

Liptak, Bela G.
 Instrument Engineers Handbook. Process Control and Optimization
 Instrument Engineers Handbook. Process Software and Digital Networks

Eaton Fluid Power Training
 Introduction to Hydraulics Technology

Nyce, David S.
 Linear Position Sensors

Park, John
 Practical Data Communication for Instrumentation and Control

Mackay, Steve Practical Industrial Data Networks

Terrel, David L.
 Fundamentals of Electronics DC/AC Circuits

Cooke and Adams
 Basic Math for Electronics

Ptec Instrumentation
 Kirk, Franklin & Philip, Weeder, Instrumentation

 Kirk, Franklin & Philip, Weeder, Thomas A.

Murrill, Paul W. Fundamentals of Process Control Theory
 Buchla, David Experiments of Digital Fundamentals

• Floyd, Thomas L. Principals of Electric Circuits

Bartlet, Terry Instrumentation and Process Control

• Patrick, Dale R. & Steven R. Pneumatic Instrumentation

¹ When asked about the technical information resources they use in their trade, about 2/3 of the SMEs, identified the "Help Menus" of the products they configure and install as a significant source of up-to-date technical information.

Faulk, Sutko

• Thomson, Delmar Learning

• Price, Winston T. & Miller, Merlin

• Alerich, Walter N. & Keljik, Jeff

· Considine, Douglas M.

• Anderson, Norman A.

• Bell, David A.

• Rease, Dudley A.

• Skoog, Douglas A. & West, Donald

Μ.

Shortley and Williams

• Wildi, Theodore

• Johnston, Curtis D.

• Steingress, Frederick M.

• Heath, Macnaughton and

Martindale

Kuphaldt, Tony R.

• Floyd, Thomas L.

• Spitzer, David W.

• Trevathan, Vernon L.

Eren, Halit

• Macdonald, Dave

Industrial Instrumentation

Fundamentals of Instrumentation

Elements of Data Processing Math

Electricity 3

Process Industrial Instrumentation and Control Hand Book

Instruments for Process Measurement and Control

Fundamentals of Electric Circuits

Basic Fluid Power

Fundamentals of Analytical Chemistry

Elements of Physics

Electrical Machines, Drives and Power Systems

Process Control Instrument Technologies

Low Pressure Boilers

Fundamentals of Physics

Lessons in Industrial Instrumentation

Digital Fundamentals, 8th edition. Prentice-Hall, 2005.

Industrial Flow Measurement, 3rd edition. Instrument Society Of

America, 2005.

Ed. A Guide to the Automation Body of Knowledge, 2nd edition.

Instrument Society of America, 2006.

Wireless communication systems/ Design and construction; CRC Press,

2006. 297 pages ISBN 0849336740

Practical Industrial Safety, Risk Assessment and Shutdown Systems, 2003.

Paperback, 384 pages, publication date: NOV-2003

ISBN-13: 978-0-7506-5804-1

ISBN-10: 0-7506-5804-5

ONLINE RESOURCES

(AS OF AUGUST 2020)

- www.abb.com ABB
- www.boschrexroth.ca Bosch Rexroth Canada is the Canadian partner of Bosch Rexroth, an international company specializing in "Drive and Control." Some technical information on hydraulics, including course outlines for introduction and maintenance.
- <u>www.control.com</u> "Control.com," an online global community of automation professionals. Webpage includes a forum for questions, list of topic threads, opportunity for exchange of ideas and information with other instrumentation professionals.
- www.controlglobal.com/whitepapers/
- http://www.controlsweekly.com Controls Weekly Review weekly reviews of manufactured systems used in process control; archive; topics list. Information updated weekly.
- www.cpecn.com/
- www.croftinst.com/home.htm Croft Instrument Systems process instrument designers, suppliers and manufacturers. Process Solids: (see: "suspended solids" and "standard consistency" for technical/product notes).
- <u>www.cvs-controls.com</u> CVS Controls is a manufacturer and supplier of products for the process control industry. Select "literature": free instruction manuals available.
- <u>www.cyberlaboratory.com/</u> -- Information on density.
- <u>www.documentation.emersonprocess.com/</u> Click on "Emerson Process Management Documentation Library" for free downloads, including a 297 page Control Valve handbook.
- www.emersonprocess.com Emerson.
- <u>www.emersonprocess.com/fisher</u> Fisher.
- <u>www.emersonprocess.com/university</u> PlantWeb University has 11 courses (free download when registered no cost to register) on Safety Instrumented Systems (SIS) and 21 courses on wireless technologies.
- www.enmet.com Enmet Corporation. Manufactures gas and vapor detectors, stationary and portable.
- www.fisherregulators.com (requires registration to access technology literature).
- www.flowcontrolnetwork.com
- www.foxboro.com Foxboro
- www.galvanic.com Galvanic Applied Sciences Ltd. (see "suspended solids" under the "liquid measurement" heading for product notes).
- www.gongol.net DJ Gongol and Associates, manufacturers of range of process-control related equipment. Select "Instruments" scroll to "toxic gas detections", see specifications for portable and hand held equipment.
- <u>www.graceindustries.com</u> Grace Industries manufactures industrial safety products. Information on lone worker security systems (click "industrial Safety products").
- <u>www.honeywell.com</u> Honeywell.
- <u>www.iceweb.com.au/Technical/LevelTechnologies.html</u>
- <u>www.invensys.com</u> Invensys.
- www.isa.org The Instrumentation, Systems and Automation Society.
- <u>www.joliettech.com</u> Joliet Technologies, producer of variable speed drive systems and controls. Product material has good information on VSD and VFD.
- <u>www.metsoautomation.com</u> Metso.

SKILLED TRADESBC

Training Provider Standards Section 5

- http://www.modelingandcontrol.com/ Modeling and Control: the Dynamic World of Process Control is a blog written by two men with a "broad range of experience in the design and commissioning of batch and continuous process control systems and the development and application of process simulation for operator training and control study." They write with the intent that readers will find the information posted interesting and helpful in work situations.
- www.nfpa.org/codes-and-standards/document-information-pages NFPA Codes and Standards e.g. NFPA 85 – Boiler and Combustion Systems Hazards Code.
- http://www.ca.endress.com/en Endress + Hauser.
- http://www.blrbac.org/ Black Liquor Recovery Boiler Advisory Committee.
- http://www.multimediahrd.com/ Multi media offers DVD and video materials on 10 topics related to hydraulics training. Click on "DVD and video" on webpage sidebar, scroll down to "technical" on new page shown, select "hydraulics" to view topics covered.
- <u>www.omega.com</u> Information on basic process measurements like flow, temperature, pressure, pH, conductivity, level, etc.
- <u>www.ohsonline.com</u> --National US website on employment safety issues; use Search button to get information on personal gas detectors.
- <u>www.processingtalk.com/guides/</u> News and information site for Process Engineers, updated daily. Select "Emergency Shutdown" from list of common terms – or browse through for information on other topics.
- www.raesystems.com Rae Systems. See technical and application notes for information on hand held and portable sensors (personal safety systems).
- www.scadalink.com Bentek Systems. See Tech notes for information on wireless SCADA systems.
- <u>www2.sea.siemens.com/Products/Process-Instrumentation/Support/PI-User-Manuals</u> --advanced control strategies.
- www.smar.com/PDFs/Catalogues/FBTUTCE.pdf -- Foundation Fieldbus information.
 www.smar.com/PDFs/Catalogues/HARTTUTCE.PDF -- a good tutorial on HART communication.
- <u>www.spitzerandboyes.com</u>
- www.vegacontrols.co.uk/vega_downloads_open.htm --Radar and ultrasonic level measurements.
- <u>www.worksafebc.com</u> -- WorkSafeBC's webpage view the provincial OHS regulation, which explains employer/employee responsibilities, get access to WorkSafeBC publications on specific issues (young worker safety, accident reports...etc.)
- www.yokogawa.com Yokogawa.
- <u>www.zoneni.com</u> National Instruments see the NI developer zone.
- http://www.skilledtradesbc.ca/program/instrumentation-and-control-technician-industrial-instrument-mechanic http://nuclearsafety.gc.ca/eng/ Canadian Nuclear Safety Commission.
- http://www.nist.gov/ National Institute of Standards and Technology.
- The Engineering Mindset. Power factor Explained The Basics What is Power Factor pf, https://www.youtube.com/watch?time_continue=2&v=Tv_7XWf96gg&feature=emb_logo
- Vesma, Vilnis, Three Phase Explained, https://www.youtube.com/watch?time_continue=2&v=MnH_ifcRJq4&feature=emb_logo
- Khutoryansky, Eugene. Op Amp Circuits: Analog Computers from operational amplifiers. https://www.youtube.com/watch?time_continue=1&v=_o4ScgRZtNI&feature=emb_logo
- Stron Medicine. Hydrostatic Pressure (Fluid Mechanics Lesson 3). https://www.youtube.com/watch?time_continue=2&v=C0ujLqKPWew&feature=emb_logo
- TED Ed. The History of the barometer (and how it works) Asaf Bar-Yosef.
 https://www.youtube.com/watch?time continue=1&v=EkDhlzA-lwI&feature=emb logo
- Mensor LP. DH-Budenberg CPB5800 Deadweight Tester Overview | How Dual Piston Technology Works. https://www.youtube.com/watch?v=OH-T_CcAJj0&feature=emb_logo

- LunchBox Sessions. LunchBox Sessions Youtube Channel.
 https://www.youtube.com/channel/UCBX5Ai80CYu_DWmwdIZGIKO
- Learnchannel. Learnchannel Youtube Channel.
 https://www.youtube.com/channel/UCy9UQv9SaA-fKpqoE1VWjCg
- The Physics Channel. The Physics Channel Youtube channel. https://www.youtube.com/channel/UCaVjLZhirwDg-D0hBcqT4Vg,
- Endress+Hauser. Endress+Hauser Youtube Channel. https://www.youtube.com/channel/UCZGXEDoheb9GkTnB4BPKoaQ
- RealPars. What is a Level Sensor?. https://www.youtube.com/watch?time_continue=3&v=EMotg3BQjll&feature=emb_logo
- Emerson. Emerson Youtube Channel, Fisher Valves & Instruments. https://www.youtube.com/channel/UCeeaILbj7WNXOxF0bbu2HCQ
- RedVectorOnline. Three Basic Mechanisms for Pneumatic Controllers.
 https://www.youtube.com/watch?time continue=1&v=8 UPBYucUM0&feature=emb logo
- Technical Engineering School. Technical Engineering School Youtube Channel. https://www.youtube.com/channel/UCR0EfsRZIwA5TVDaObTqwEO
- Learn Engineering. Learn Engineering Youtube Channel. https://www.youtube.com/channel/UCqZQI4600a9wIfMPbYc60OQ
- CrashCourse. Boolean Logic & Logic Gates: Crash Course Computer Science #3. https://www.youtube.com/channel/UCX6b17PVsYBQ0ip5gyeme-Q
- Schneider Electric. Schneider Electric Youtube Channel.
 https://www.youtube.com/channel/UCnpgiEw2RHDBNVGDe8pI7tw

Instructor Requirements

Occupation Qualification

The instructor must possess:

 Red Seal Qualification as an Instrumentation and Control Technician (Industrial Instrument Mechanic)

Work Experience

A minimum of 5-years' experience working in the industry as a Journeyperson.

Instructional Experience and Education

It is preferred that the instructor also possesses one of the following:

- Instructor's Certificate (minimum 30 hr course)
- Registered in an Instructor's Diploma Program (to be completed within a five year period)
- Bachelor's or Master's degree in Education
- Power Engineering Certificate (4th Class or higher)
- Red Seal qualification as an Industrial or Construction Electrician

Appendix A Acronyms

ASME - American Society of Mechanical Engineers	OH&S - Occupational Health and Safety Act
A/D, ADC – Analog to Digital Converter	OPC - OLE (Object Linking Embedding) Process Control
BMS - Burner Management Systems	ORP - Oxidation Reduction Potential
BPR - Boiling Point Rise	P&C - Process and control
CEC - Canadian Electrical Code	P&ID - Piping & Instrument Drawing
CEMS - Continuous Emissions Monitoring System	PID - Proportional, Integral, Derivative
CNSC - Canadian Nuclear Safety Commission	PLC - Programmable Logic Controller
CSA - Canadian Standards Association	PPE - Personal Protection Equipment
CRT - Cathode Ray Tube	PSS - Process Safety Systems
D/A, DAC – Digital to Analog Converter	RTU – Remote Terminal Unit
DCS - Distributed Control System	RTD - Resistive Temperature Device
DP – Differential Pressure	SAC - Stand Alone Controller
EPA – Environment Protection Act	SAMA - Scientific Apparatus Manufacturers Association
ESD – Emergency Shutdown Device	SCADA - Supervisory Control and Data Acquisition
FD - Forced draft	SIL - Safety Integrity Level
GPS - Global Positioning System	SIS – Safety Instrument System
HART - Highway Addressable Remote Transducer	SOP - Standard Operating Procedures
HMI - Human Machine Interface	TCP/IP - Transport Control Protocol / Internet Protocol
I/O - Input/output	TDG - Transportation of Dangerous Goods
ID - Induced draft	UPS – Uninterruptible Power Supply
ISA - Instrumentation, Systems and Automation Society	VFD - Variable Frequency Drive
LNG - Liquefied Natural Gas	VSD – Variable Speed Drive
LCD - Liquid Crystal Display	WHMIS/GHS – Workplace Hazardous Materials Information System / Globally Harmonized System
LED – Light Emitting Diode	
LVDT - Linear variable differential transformer	
MISA - Municipal Industry Strategy for Abatement	
MPC - Model Predictive Control	
MSDS - Material Safety Data Sheets	

NIST - National Institute of Standards and Technology

Appendix B Glossary

Actuator - a controlled hardware device used to implement change in a process

Adapter – a device used to make electrical or mechanical connections between items not originally intended for use together

Align - to bring within required specifications

Amplifier – a device that enables an input signal to control power from a source independent of the signal and thus be capable of delivering an output that bears some relationship to, and is generally greater than, the input signal

Analog signal – any variable signal continuous in both time and amplitude rather than of a pulsed or discrete nature

Apply - to put to use especially for some practical purpose

Back-up - to save configuration, current data or status in recoverable media

Bellows – a mechanical element of generally cylindrical shape with cylindrical walls containing deep convolutions

Benchtest - removing a piece of equipment and testing it at the shop; a static setup as opposed to a dynamic setup

Calibrate – to determine, by measurement or comparison with a standard, the correct value of each scale reading on a meter or other device

Cascade control – a type of controller set-up in which the output of one controller acts as the set point or controlling signal of another controller

Configure - to set up a program or computer system for a particular application

Control mode - a specific type of control action such as proportional, integral or derivative

Control variable – measured variables that can be manipulated by the control system, such as flow, level, pressure and temperature

Describe - to give a detailed or graphic account of a process or procedure

Determine - to arrive at, or locate, information by a process

Distributed Control System (DCS) – a system of dividing plant or process control into several areas of responsibility, each managed by its own controller (processor), with the whole interconnected to form a single entity usually by communication buses of various kinds

Document - to provide proof or evidence

Examine - to investigate critically; scrutinize; test; question

Feed forward – an industry standard process control strategy, in which mathematically predicted errors are corrected before they occur

Fieldbus – a digital, two-way, multi-drop communication link among intelligent measurement and control devices which serves as a Local Area Network (LAN) for advanced process control, remote input/output and high speed factory automation applications; a communication protocol

Firmware – software (programs or data) that has been written onto read-only memory chips; firmware is a combination of software and hardware

Flume - a device that measures large flow rates in open channels

Frequency - the number of cycles completed by a periodic quantity on a unit time

Highway Addressable Remote Terminal (HART) – provides digital communication to microprocessor-based (smart), analog process control instruments; a communication protocol

Human Machine Interface (HMI) - the graphical display and control interface between a process & a human operator

Implement - to make active or effective

Input/Output (I/O) - all equipment and activity that transfers information into or out of a computer

Install - to set up for use or service

Instrumentation – a collection of instruments or their application for the purpose of observation, measurement or control

Instrumentation, Systems and Automation Society (ISA) – an engineering society that develops and maintains defined standards for both scientific and technical areas of process control and automation

Interface - the place at which systems, such as a computer and a peripheral, meet and interact with each other

Kinetic - the energy that a body possesses as a result of its motion

Maintain - to keep in good condition; to keep functional and in good repair

Management of change (facility change management) – proper management of change to industrial facilities and processes is recognized as critical to even small changes; the main requirement is that a thorough review of a proposed change be performed by a multidisciplinary team to ensure that as many possible viewpoints as possible are used to minimize the chances of missing a hazard

Module – an assembly of interconnected components which constitutes an identifiable device, instrument or piece of equipment — can be removed, tested as a unit and replaced with a spare

Network - the interconnection of devices sharing a communications protocol

Operate - to perform a function; exert power or influence

Piping and Instrumentation Diagram (P&ID) - diagram of piping and instrumentation

Port - a signal input (access) or output (egress) point

Power supply - a device that produces one or more voltages for the operation of electronic and logic devices

Process – physical or chemical change of matter or conversion of energy such as change in pressure, temperature, speed, electrical potential, etc.

Profibus – a communication protocol

Program – a list of instructions that a computer will execute to perform a certain task

Programmable Logic Controller (PLC) a control device, normally used in industrial control applications, that employs the hardware architecture of a computer and a relay ladder diagram language

Proportional, Integral, Derivative (PID) proportional gain, integral action time and derivative action time. PID software, for example, compares an analog input value with a set point and if there's a discrepancy outputs an appropriate analog or digital control value, according the PID calculations

Range – the region between the limits within which a quantity is measured, received or transmitted; expressed by stating the lower and upper range values

Remote – a device allowing the set point to be altered by a signal from a physical location away from the controller — necessary for cascade operation

Safety Integrity Level (SIL) - Safety Instrument System (SIS)/Process Safety System (PSS)

Sensing element - the element directly responsive to the value of the measured variable

Service - to remove, maintain, repair, or replace items and/or components

Signal - a form of energy that quantitatively represents a variable

Strain gauge - a device that uses the change of electrical resistance of a wire under strain to measure applied force

Supervisory Control and Data Acquisition (SCADA) – a control package used to monitor and control a remote process; also includes hardware such as modems, telemetry, servers and control systems

Telemetry - transmitting the readings of instruments to a remote location via wires, radio waves or other means

Temperature bath – a volume of a substance held at constant temperature, so that an object placed in thermal contact with it is maintained at the same temperature

Terminal - a peripheral device used by the operator to communicate with the computer

Test - to methodically assess against criterion or standard

Thermocouple – devices that convert heat energy into electrical energy consisting of two dissimilar metal strips fused together at one end

Transducer - an element or device that receives energy in one form and converts to another form

Transmitter – a transducer which responds to a measured variable by means of a sensing element, and converts it to a standardized transmission signal that is proportional to the measured variable

Troubleshoot - to investigate critically and methodically the causes of abnormal conditions

Tuning - adjustment of parameters to optimize a particular process

Uninterruptible Power Supply (UPS) used to keep critical equipment, including computers, running in the event of a power failure

Update - to record current data or status

Use - the act or practice of employing something

Variable Frequency Drive (VFD) and Variable Speed Drive (VSD) electronic equipment that allows an electric motor to be run at varying speeds

Weir - an engineered obstruction placed in an open channel

Appendix C Previous Contributors

The Program Outline was prepared under the direction of an Industry Steering Committee convened by the Resource Training Organization (RTO). Members include:

Curt Cain RTO

Lindsay Langill SkilledTradesBC

Danny Della Maestra IBEW 258

Bob Hughf CEP Western Region Jeff Lekstrom Northern Lights College

Doug MacLaren RTO
Andrew McLaren CAW 2301

Ron Merkel Pyramid Oil and Gas Corporation

Joe Rea Canfor Pulp and Paper Northwood Pulp Mill

Robert Zwick Teck Cominco Metals

Subject Matter Experts retained to assist in the development of the Program Outline (2008) content:

Jim Armstrong BCIT Julie Umberger BCIT

Wes Babcock Taylor Gas Liquids John Beaumont Teck Cominco Metals

John Bradbury Pulp, Paper and Woodworkers of Canada (PPWC) Local 2

Mike Hamilton Catalyst Paper

Dave Luszcz Domtar Pulp Ltd. Kamloops Trevor O'Rourke Northern Lights College

Joe Rea Canfor Pulp and Paper Northwood Pulp Mill

Shane Stirling Epscan

Robert Zwick Teck Cominco Metals