SKILLEDTRADES^{BC}

PROGRAM OUTLINE

Powerline Technician

The latest version of this document is available in PDF format on the SkilledTradesBC website www.skilledtradesbc.ca

To order printed copies of Program Outlines or learning resources (where available) for BC trades contact:

Crown Publications, Queen's Printer Web: www.crownpub.bc.ca Email: crownpub@gov.bc.ca Toll Free 1 800 663-6105

Copyright © 2019 SkilledTradesBC

This publication may not be modified in any way without permission of SkilledTradesBC

POWERLINE TECHNICIAN HARMONIZED PROGRAM OUTLINE

APPROVED BY INDUSTRY DECEMBER 2019

> BASED ON RSOS 2019

Developed by SkilledTradesBC Province of British Columbia

TABLE OF CONTENTS

Section 1 INTRODUCTION
Foreword
Section 2 PROGRAM OVERVIEW
Program Credentialing Model9Training Topics and Suggested Time Allocation13Training Topics and Suggested Time Allocation15Training Topics and Suggested Time Allocation16Training Topics and Suggested Time Allocation17
Section 3 PROGRAM CONTENT 18
Level 1 Powerline Technician
Section 4 ASSESSMENT GUIDELINES
Assessment Guidelines – Level 1
Section 5 TRAINING PROVIDER STANDARDS
Facility Requirements102Tools and Equipment103Reference Materials106Instructor Requirements107
Appendices
Appendix A: Glossary

Section 1 INTRODUCTION

Powerline Technician

Foreword

This revised Powerline Technician Program Outline is intended as a guide for instructors, apprentices, and employers of apprentices as well as for the use of industry organizations, regulatory bodies, and provincial and federal governments. It reflects updated standards based on the new Powerline Technician Red Seal Occupational Standard (2019) and was prepared with the participation, advice and assistance of British Columbia industry and instructor subject matter experts and will form the basis for further updating of the British Columbia Powerline Technician Program.

Practical instruction by demonstration and student participation should be integrated with classroom sessions. Safe working practices, even though not always specified in each operation or topic, are an implied part of the program and should be stressed throughout the apprenticeship.

This Program Outline includes a list of recommended references that are available to support the learning objectives and the minimum shop requirements needed to support instruction.

Competencies are to be evaluated through written exams and practical assessments. A passing grade is achieved by getting an overall mark of 70%. See the Assessment Guidelines for more details. The types of questions used on these exams must reflect the cognitive level indicated by the learning objectives and the learning tasks listed in the related competencies.

Achievement Criteria are included for those competencies that require a practical component. The intent of including Achievement Criteria in the Program Outline is to ensure consistency in training across the many training institutions in British Columbia. Their purpose is to reinforce the theory and to provide a mechanism for evaluation of the learner's ability to apply the theory to practice. It is important that these performances be observable and measurable and that they reflect the skills spelled out in the competency as those required of a competent journeyperson. The conditions under which these performances will be observed and measured must be clear to the learner as well as the criteria by which the learner will be evaluated. The learner must also be given the evaluation criteria.

The performance spelled out in the Achievement Criteria is a suggested performance and is not meant to stifle flexibility of delivery. Training providers are welcome to substitute other practical performances that measure similar skills and attainment of the competency. Multiple performances may also be used to replace individual performances where appropriate.

SAFETY ADVISORY

Be advised that references to the WorkSafeBC safety regulations contained within these materials do not/may not reflect the most recent Occupational Health and Safety Regulation the current Standards and Regulation in BC can be obtained on the following website: <u>http://www.worksafebc.com</u>. Please note that it is always the responsibility of any person using these materials to inform him/herself about the Occupational Health and Safety Regulation pertaining to his/her work.

Acknowledgements

The Subject Matter Experts (SMEs) retained to review the Program Outline in 2019 include:

- Ben Berkelaar, BC Hydro
- Wesley Nustad, BC Hydro
- Chris Smith, BC Hydro
- Chase Anderson, Allteck Line Contractors
- Dave Fossa, Allteck Line Contractors
- Benton Hadley, Fortis BC
- Pat Hagel, IBEW 258

The industry Subject Matter Experts (SMEs) retained to review the Program Outline in 2013/2014 include:

- Ben Berkelaar, BC Hydro
- Gerry Bramhill, Electrical Industry Training Institute
- Phil Davis, Electrical Industry Training Institute
- Mike Ferguson, BC Hydro
- Dan Giesbrecht, IBEW 258
- Benton Hadley, Fortis BC
- Allan Pineau, BC Hydro
- Jeff Skosnik, Line Contractors Association

SkilledTradesBC would like to acknowledge the dedication and hard work of all the industry representatives appointed to identify the training requirements of the Powerline Technician occupation.

How to Use this Document

This Program Outline has been developed for the use of individuals from several different audiences. The table below describes how each section can be used by each intended audience.

Section	Training Providers	Employers/ Sponsors	Apprentices	Challengers
Program Credentialing Model	Communicates program length and structure, and all pathways to completion	Illustrates the length and structure of the program	Illustrates the length and structure of the program, and pathway to completion	Illustrates the challenger pathway to Certificate of Qualification
OAC	Communicates the competencies that industry has defined as representing the scope of the occupation	Displays the competencies that an apprentice is expected to demonstrate in order to achieve certification	Displays the competencies apprentices will achieve as a result of program completion	Displays the competencies challengers must demonstrate in order to challenge the program
Training Topics and Suggested Time Allocation	Shows proportionate representation of general areas of competency (GACs) at each program level, the suggested proportion of time spent on each GAC, and percentage of time spent on theory versus practical application	Shows the scope of competencies covered in the technical training, the suggested proportion of time spent on each GAC, and the percentage of that time spent on theory versus practical application	Shows the scope of competencies covered in the technical training, the suggested proportion of time spent on each GAC, and the percentage of that time spent on theory versus practical application	Shows the relative weightings of various competencies of the occupation on which assessment is based
Program Content	Defines the objectives, learning tasks, and high level content for each competency, as well as defining observable, measurable achievement criteria for objectives with a practical component	Identifies detailed program content and performance expectations for competencies with a practical component; may be used as a checklist prior to signing a recommendation for certification (RFC) for an apprentice	Provides detailed information on program content and performance expectations for demonstrating competency	Allows individual to check program content areas against their own knowledge and performance expectations against their own skill levels
Training Provider Standards	Defines the facility requirements, tools and equipment, reference materials (if any) and instructor requirements for the program	Identifies the tools and equipment an apprentice is expected to have access to; which are supplied by the training provider and which the student is expected to own	Provides information on the training facility, tools and equipment provided by the school and the student, reference materials they may be expected to acquire, and minimum qualification levels of program instructors	Identifies the tools and equipment a tradesperson is expected to be competent in using or operating; which may be used or provided in a practical assessment

Section	Training Providers	Employers/ Sponsors	Apprentices	Challengers
Appendix – Glossary of Acronyms			Defines program specific acronyms	

Section 2 PROGRAM OVERVIEW

Powerline Technician

Program Credentialing Model

CROSS-PROGRAM CREDITS

Individuals who hold the credentials listed below are entitled to receive partial credit toward the completion requirements of this program

NONE

Program Overview

Occupational Analysis Chart

POWERLINE TECHNICIAN

Occupation Description: Powerline technicians install, maintain and repair overhead, underground and underwater powerlines and cables, and other associated equipment such as insulators, conductors, lightning arrestors, switches, metering systems, transformers and lighting infrastructure.

W = Workplace Skill Acquisition

SKILLED TRADES^{BC}

TRANSMISSION	Describe transmission materials J1 3	Construct transmission lines W J2 3	Maintain transmission lines W J3 3 4	Operate transmission electrical apparatus W J4 3	Troubleshoot overhead transmission system components W J5 4	
COMMUNICATION	Plan tailboard meetings W K1	Communicate using hand signals	Communicate using electronic devices and systems W K3	Apply communication protocols and requirements W K4	Apply communication techniques K5	Apply mentoring techniques K6
	1 2 3	1	1	2	1	4

POWERLINE TECHNICIAN – LEVEL 1

		% of Time	Theory	Practical	Total
Line A	SAFETY AND SAFE WORK PRACTICES	15%	60%	40%	100%
A2	Use trade specific personal protective equipment (PPE)		• •	\checkmark	
A3	Apply limits of approach		✓	\checkmark	
A4	Apply lock-out and tag-out procedures		\checkmark	\checkmark	
A5	Apply grounding and equi-potential bonding principles		\checkmark	\checkmark	
A6	Perform rescue		\checkmark	\checkmark	
Line B	CLIMBING	11%	40%	60%	100%
B1	Describe care and use of climbing equipment		\checkmark		
B2	Climb structures		\checkmark	\checkmark	
B3	Use elevated platforms and ladders		√	\checkmark	
B4	Test for pole (structure) stability		\checkmark		
Line C	POLICIES AND REGULATIONS	6%	60%	40%	100%
C1	Identify environmental hazards		\checkmark	\checkmark	
C2	Apply industry safety regulations		✓	✓	
Line D	TOOLS AND INSTRUMENTS	9%	45%	55%	100%
D1	Use hand tools		\checkmark	\checkmark	
D2	Use power tools		\checkmark	\checkmark	
D3	Use live line tools		\checkmark	\checkmark	
D4	Use test instruments		✓	✓	
Line E	ELECTRICAL THEORY	14%	66%	34%	100%
E1	Apply electrical fundamentals		\checkmark	\checkmark	
E3	Explain transformation and install transformers		\checkmark	\checkmark	
E4	Install self-contained metering		\checkmark	✓	
Line F	EQUIPMENT	8%	34%	66%	100%
F1	Identify mobile line equipment		\checkmark		
F2	Use hydraulically-equipped vehicles		\checkmark	✓	
Line G	RIGGING	13%	50%	50%	100%
G1	Explain rigging, hoisting and lifting equipment		\checkmark		
G2	Use lifting, rigging and hoisting equipment		\checkmark	\checkmark	
Line H	OVERHEAD DISTRIBUTION (OD)	15%	55%	45%	100%
H1	Describe overhead distribution materials		√		
H2	Describe overhead distribution systems		\checkmark		
H3	Construct distribution lines		\checkmark	\checkmark	
H4	Demonstrate safe work practices for live line work		\checkmark		
H5	Maintain single-phase distribution lines		✓	✓	
Line I	UNDERGROUND DISTRIBUTION (UD)	4%	45%	55%	100%

		% of Time	Theory	Practical	Total
I1	Use Underground distribution (UD) equipment and materials		✓	√	
Line K K1	COMMUNICATION Plan tailboard meetings	5%	50% ✓	50% ✓	100%
K2	Communicate using hand signals		\checkmark	\checkmark	
K3	Communicate using electronic devices and systems		\checkmark	\checkmark	
K5	Apply communication techniques		\checkmark		
	Total Percentage for BC Powerline Technician Level One	100%			

POWERLINE TECHNICIAN – LEVEL 2

		% of Time	Theory	Practical	Total
Line D D4	TOOLS AND INSTRUMENTS Use test instruments	13%	50% ✓	50% √	100%
Line E E1 E2 F3	ELECTRICAL THEORY Apply electrical fundamentals Describe operation of motors and generators Explain transformation and install transformers	20%	80% ✓ ✓	20% ✓	100%
Line G G3 G4	RIGGING Use rigging tools and equipment in construction and maintenance Apply rigging tools and equipment for live line distribution	19%	50% ✓	50% ✓	100%
Line H H3 H6 H7	OVERHEAD DISTRIBUTION (OD) Construct distribution lines Maintain three-phase distribution lines Operate overhead distribution (OD) electrical apparatus	24%	40% ✓ ✓ ✓	60% ✓ ✓	100%
Line I I1 I2 I3	UNDERGROUND DISTRIBUTION (UD) Use underground distribution (UD) equipment and materials Construct underground distribution systems Maintain underground distribution systems	16%	50% ✓ ✓	50% ✓ ✓	100%
Line K K1 K4	COMMUNICATION Plan tailboard meetings Apply communication protocols and requirements	8%	30% ✓ ✓	70% ✓	100%
	Total Percentage for BC Powerline Technician Level Two	100%			

POWERLINE TECHNICIAN – LEVEL 3

		% of Time	Theory	Practical	Total
Line E	ELECTRICAL THEORY	15%	70%	30%	100%
E5	Install transformer metering		\checkmark	✓	
Line F	EQUIPMENT	6%	100%	0%	100%
F3	Use stringing equipment		✓		
Line G	RIGGING	20%	50%	50%	100%
G5	Use rigging tools and equipment in transmission, construction and maintenance			\checkmark	
G6	Perform live line transmission rigging		✓	✓	
Line I	UNDERGROUND DISTRIBUTION (UD)	17%	30%	70%	100%
I4	Operate underground distribution electrical apparatus		\checkmark	\checkmark	
Line J	TRANSMISSION	30%	50%	50%	100%
J1	Describe transmission materials		\checkmark		
J2	Construct transmission lines		\checkmark	\checkmark	
J3	Maintain transmission lines		\checkmark	\checkmark	
J4	Operate transmission electrical apparatus		✓	✓	
Line K	COMMUNICATION	12%	30%	70%	100%
K1	Plan tailboard meetings		\checkmark	\checkmark	
	Total Percentage for BC Powerline Technician Level Three	100%			

POWERLINE TECHNICIAN – LEVEL 4

		% of Time	Theory	Practical	Total
Line E	ELECTRICAL THEORY	24%	60%	40%	100%
E6 E7	Describe system operation and protection		√		
E7 E8	Operate voltage regulators and capacitors		✓ ✓	✓ ✓	
Line F	FOIIIPMENT	4%	100%	0%	100%
F3	Use stringing equipment	170	√	070	10070
Line H	OVERHEAD DISTRIBUTION (OD)	37%	60%	40%	100%
H6	Maintain three-phase distribution lines	0170	√	-1070 √	10070
H7	Operate overhead distribution (OD) electrical apparatus		\checkmark	\checkmark	
H8	Troubleshoot overhead distribution system components		\checkmark	\checkmark	
Line I	UNDERGROUND DISTRIBUTION (UD)	17%	70%	30%	100%
15	Troubleshoot underground distribution system components			✓	
Line J	TRANSMISSION	10%	100%	0%	100%
J3	Maintain transmission lines		\checkmark		
J5	Troubleshoot overhead transmission system components		\checkmark		
Line K	COMMUNICATION	8%	50%	50%	100%
K6	Apply mentoring techniques		\checkmark	\checkmark	
	Total Percentage for BC Powerline Technician Level Four	100%			

Section 3 PROGRAM CONTENT

Powerline Technician

Level 1 Powerline Technician

Line (GAC): A SAFETY AND SAFE WORK PRACTICES

Competency: A1 Apply safety regulations

Objectives

To be competent in this area, the individual must be able to:

- Apply applicable Occupational Health and Safety (OH&S) Regulations.
- Determine requirements applicable in the workplace.

LEARNING TASKS

1. Identify and apply applicable Occupational Health and Safety regulations

CONTENT

- WorkSafeBC (OHS) Regulation
- Safety Practice Regulation (SPR)
- WHMIS (MSDS) TDGR
- Controlled substances:
 - o Isopropynol
 - Polychlorinated biphenals (PCBs)
 - Gas and oil
 - o SF6
 - Mineral oils
 - Cable oil
 - o Propane
 - Battery acid
 - Ampact shells
 - o Implosive sleeves
 - o Oxyacetylene
 - Nitrogen cylinders

Workplace Achievement Criteria

Given information on Federal and Provincial Occupational Health and Company Specific Safety policies, the learner must correctly follow these procedures and regulations at all times. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): Α SAFETY AND SAFE WORK PRACTICES

Competency:

A2 Use trade specific personal protective equipment (PPE)

Objectives

To be competent in this area, the individual must be able to:

Demonstrate the care and use of Personal Protective Equipment. •

LEARNING TASKS

- CONTENT
- 1. Identify, describe and use personal protective equipment (PPE)
- UV protective goggles
- Hand protection •
 - Protective gloves
 - Low and high-voltage rubber 0 gloves
- Safety footwear
 - OHM sticker footwear 0
 - 9-in. minimum \cap
 - Conductive boots (bare hand, live 0 line transmission work)
- Safety headwear
 - \circ Class 'E' hardhats
 - Chin straps
- Safety clothing
 - o Fire-retardant clothing
 - Arc-rated clothing 0
- High-visibility day and night clothing
- PPE
- 2. Demonstrate the care of personal protective equipment (PPE)

Achievement Criteria

The learner will identify, describe and use Personal Protective Equipment. Performance Conditions In a lab setting as part of a practical project. Criteria Learner will be evaluated on selection and application of PPE.

Workplace Achievement Criteria

Given information and regulations with respect to the use of personal protective equipment in the workplace, the learner must correctly follow relevant procedures and regulations at all times. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): A SAFETY AND SAFE WORK PRACTICES

Competency: A3 Apply limits of approach

Objectives

To be competent in this area, the individual must be able to:

- Recognize potential risks and identify and apply relevant regulations.
- Apply specific work procedures based on limits of approach.

LEARNING TASKS

CONTENT

- 1. Describe limits of approach and their importance
- 2. Identify and describe factors that determine limits of approach

Apply specific work procedures based on

- Hazards and risks associated with energized lines and equipment
 - Voltage
 - Altitude
 - Humidity
 - Weather conditions
 - o Rain
 - Snow
 - o Fog
 - o Electrical storms
 - Moisture build-up
 - o Ice build-up
 - Climbing poles
 - Hanging transformers
 - Street lights
 - Boom truck operations

Achievement Criteria

limits of approach

3.

PerformanceThe learner will apply limits of approach to energized lines and equipment.ConditionsIn a lab setting as part of a practical project.CriteriaLearner will be evaluated on limits of approach.

Workplace Achievement Criteria

Given information and regulations with respect to the limits of approach to energized lines and equipment in the workplace, the learner must correctly follow relevant procedures and regulations at all times. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): A SAFETY AND SAFE WORK PRACTICES

Competency: A4 Apply lock-out and tag-out procedures

Objectives

To be competent in this area, the individual must be able to:

- Recognize potential risks and identify relevant procedures with reference to WorkSafeBC Regulation.
- Apply workplace roles and responsibilities.

LEARNING TASKS

CONTENT

- 1. Describe the purpose and function of lock-out procedures
- Risks and hazards in the workplace
- Locking procedures
- Tagging procedures
- Progressive authorization
- Live line permits
- Operating diagrams (one line)
- Field tags
- Station tags
- Mimic board and tags
- Roles
 - Employer
 - Supervisor
 - o Journeyperson
 - Apprentice
 - Person in charge (PIC)
- Operating authority
- Operating permission
- Importance of area specific knowledge and experience
- Station entry authorization
- Guarantee of isolation
- Training and authorization for apprentices
- Clearances
- Test and work
- Self-protection
- Use lock-out tags
- Follow lock-out procedures
- Switching (de-energization-reenergization)
- Schematic diagrams
- Symbols

various jobs with respect to lock-out procedures

2. Describe the roles and responsibilities of

- 3. Describe safety protection guarantees
- 4. Perform various types of lock-out procedures for applicable category of authorization
- 5. Interpret operating diagrams (one line)

LEARNING TASKS

- 6. Complete testing for applicable category of authorization
- 7. Apply lock-out Procedures

CONTENT

- Identify regulatory operating boundaries
- Progressive authorizations
- Locking procedures
- Tagging procedures
- System authorization
- Live line permits
- Operating diagrams (one line)
- Field tags
- Station tags
- Mimic board and tags

Achievement Criteria

Performance	The learner will:
1 0110111141100	The rearies min

- Recognize potential risks.
- Identify relevant lock-out and tag-out principles.

Conditions Criteria

- In a lab setting as part of a practical project. Learner will be evaluated on:
 - Principles of lock-out/tag-out.

Workplace Achievement Criteria

Given information and regulations with respect to lock-out and tagging procedures in the workplace, the learner must correctly follow relevant procedures and WorkSafeBC regulations at all times. Employer assessment of performance and logbook entry is required for each task.

SAFETY AND SAFE WORK PRACTICES Line (GAC): Α

Competency:

A5 Apply grounding and equi-potential bonding principles

Objectives

To be competent in this area, the individual must be able to:

- Recognize potential risks of grounding and equi-potential bonding.
- Demonstrate grounding and bonding principles.

LEARNING TASKS

1. Describe the purpose and function of grounding and equi-potential bonding

Identify and describe grounding and equi-2. potential bonding

- Describe grounding, equi-potential bonding, 3. blocking tools and principles
- Perform safety grounding and equi-potential 4. bonding of overhead and underground lines

CONTENT

- Equi-potential zone •
- Touch potential •
- Step potential •
- Induction hazards ٠
- Running grounds and ground mats •
- Ground clamps
- Ground wire size selection •
- Pole bands •
- Safety grounding plan (SGP)
- Use and care of ground sets •
- Identify grounding switches (hazards)
- Grip-all
- Approved voltage testing tools •
- Limits of approach •
- Safety grounding plan (SGP) •
- Equi-potential zone •
- Touch potential •
- Step potential •
- Induction hazards
- Running grounds and ground mats
- Ground clamps •
- Ground wire size selection •
- Pole bands •
- Use and care of ground sets •
- Identify grounding switches (hazards) •
- Grip-all •
- Voltage testing tools •

Achievement Criteria

Performance	The learner will:
	Recognize potential risks.
	• Demonstrate appropriate grounding, bonding and equi-potential zone principles.
Conditions	In a lab setting as part of a practical project.
Criteria	Learner will be evaluated on:

• Establishment of grounding and equi-potential bonding on structures.

Workplace Achievement Criteria

Given information and regulations with respect to grounding and bonding zones in the workplace, the learner must correctly follow relevant procedures and regulations at all times. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): A SAFETY AND SAFE WORK PRACTICES

Competency: A6 Perform rescue

Objectives

To be competent in this area, the individual must be able to:

- Recognize potential risks.
- Perform rescue.

LEARNING TASKS

1. Describe and perform a pole-top and structure rescue

2. Describe and perform confined-space rescue

3. Describe and perform an aerial-lift rescue

CONTENT

.

- Hazard identification
- Call for help
- Rescue equipment
- Pole-top rescue procedures
- Hazard identification
- Call for help
- Rescue equipment
- Confined-space rescue procedures
- Hazard identification
- Call for help
- Rescue equipment
- Aerial-lift rescue procedures
- Hazard identification
- Call for help
- Rescue equipment
- Tower rescue procedures

Achievement Criteria

4. Describe tower rescue

Performance	The learner will:
	Recognize potential risks.
	Implement appropriate rescue procedures.
Conditions	In a lab setting as part of a practical project.
Criteria	Learner will be evaluated on performance of rescue procedures.

Workplace Achievement Criteria

Given information and regulations with respect to rescue situations in the workplace, the learner must correctly follow appropriate procedures and regulations at all times. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): B CLIMBING

Competency: B1 Describe care and use of climbing equipment

Objective

To be competent in this area, the individual must be able to:

• Describe care and use of climbing equipment.

LEARNING TASKS

1. Describe care and use of climbing equipment

CONTENT

- Climbers
- Body belt/Harnesses
- Fall restrict belt
- Second pole strap/worker positioning
- Climbing tools and storage
- Techniques for wood and steel
- Fall arrest procedures and equipment for wood and steel structures
- Safety check list
- Structure inspection
- Procedures for safety checks

- 2. Describe basic climbing techniques
- 3. Describe the use of fall arrest when climbing wood and steel structures
- 4. Describe equipment safety checks required prior to climbing poles, towers and ladders

Workplace Achievement Criteria

Given information and regulations with respect to climbing equipment common to the trade, the learner must demonstrate procedures for the care and safe use of such equipment at all times. Employer assessment of performance is required for each task.

Line (GAC): Β **CLIMBING**

Competency: B2 Climb structures

Objectives

To be competent in this area, the individual must be able to:

Use climbing equipment to climb structures. •

LEARNING TASKS

- 1. Perform safety checks prior to climbing structures

Types •

CONTENT

•

- Wood 0
 - Steel lattice 0
- Tests
 - Hammer 0
 - Sway 0
 - Drill 0
- Safety checklist •
- Climbing hazards • Full fall arrest
- 2. Demonstrate basic climbing techniques using safety equipment

Achievement Criteria

Performance The learner will use climbing equipment to climb structures. Conditions In a lab setting as part of a practical project. Learner will be evaluated on: Criteria

- Use appropriate equipment •
- Incorporate safety inspections •
- Perform proper climbing techniques •

Workplace Achievement Criteria

Given information and regulations with respect to climbing equipment common to the trade, the learner must demonstrate procedures for climbing structures in the workplace. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): B CLIMBING

Competency: B3 Use elevated platforms and ladders

Objectives

To be competent in this area, the individual must be able to:

• Describe and apply procedures for working on elevated platforms and ladders.

LEARNING TASKS

CONTENT

- 1. Describe the installation and use of elevated platforms
- Equipment
 - Elevated platforms
 - o Hardware
 - o Fall arrest
 - Self Retracting Lanyard (SRL)
- Installation steps
- Procedures used to transfer to and from poles and elevated work platforms
- Hazards with elevated work platforms
- Ladder types
- Safety
- Fall arrest equipment
- Hazards with procedure
- 2. Describe and use different types of ladders
- 3. Describe and use procedures for transferring from a structure to a suspended ladder

Achievement Criteria

PerformanceThe learner will use safe procedures appropriate for working on an elevated platform.ConditionsIn a lab setting as part of a practical project.CriteriaLearner will be evaluated on:

- Use of fall arrest equipment
- Install baker boards
- Use ladders
- Use baker boards

Workplace Achievement Criteria

Given information and regulations with respect to elevated platforms, the learner must identify and describe safe procedures for working on elevated platforms in the workplace. Employer assessment of performance is required for each task.

Line (GAC): B CLIMBING

Competency: B4 Test for pole (structure) stability

Objectives

To be competent in this area, the individual must be able to:

• Describe and apply procedures for testing the structural stability of poles.

LEARNING TASKS

soundness

CONTENT

1. Identify causes of pole failure

- Cracking
- Breakage
- Rot
- Motor Vehicle Accident (MVA)
- Storm damage
- Visual inspection
- Test types
 - o Hammer
 - o Sway
 - o Drill
- 3. Describe temporary anchors and support methods
- 4. Describe methods used to straighten poles

2. Describe and inspect poles for stability and

- Pole support techniques
 - o Cross-arm support
 - Boom truck
- Pole straightening techniques
 - o Rope
 - o Equipment
 - o Line truck
 - Temporary anchor

Achievement Criteria

- PerformanceThe learner will demonstrate safe procedures for testing the structural stability of poles.ConditionsIn a lab setting as part of a practical project.
- Criteria The learner will:
 - Test structures
 - Support structures

Workplace Achievement Criteria

Given information and regulations with respect to testing the structural stability of poles, the learner must identify, describe and use safe work procedures in the workplace. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): C POLICIES AND REGULATIONS

Competency: C1 Identify environmental hazards

Objectives

To be competent in this area, the individual must be able to:

• Identify environmental hazards and apply regulations common to the trade.

LEARNING TASKS

1. Identify environmental hazards

CONTENT

- Hazard types
 - o Birds
 - o Spills
 - Fire conditions
- Precautions required
 - Brush burning
 - Chemical spraying
 - Transferring hazardous materials
 - PPE
- Chemical spill response
- Fisheries Act
- Barricades and containment
- Absorbents

2. Identify and apply environmental regulations and guidelines

3. Identify and apply environmental precautions

Workplace Achievement Criteria

Given information and regulations with respect to environmental hazards and regulations, the learner must identify and describe safe work procedures in the workplace. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): C POLICIES AND REGULATIONS

Competency: C2 Apply industry safety regulations

Objectives

To be competent in this area, the individual must be able to:

• Identify and apply industry safety regulations common to the trade.

LEARNING TASKS

1. Identify licensing/certification requirements

CONTENT

- Driver licensing
 - Class
 - Endorsements
- First Aid
- Transportation of dangerous goods (TDG)
- Requirements
- Exemptions
- Location of applicable OHS Regulation
- WHMIS
- Canadian Electrical Code and Canadian Standards Association (CSA)

2. Describe components of pre-trip/pre-use inspections

- 3. Describe WorkSafe (OHS) Regulations
- 4. Describe utility standards and/or Canadian Electrical Code

Workplace Achievement Criteria

Given information on workplace situations, the learner must identify and describe the regulations that apply in the workplace. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): D TOOLS AND INSTRUMENTS

Competency: D1 Use hand tools

Objectives

To be competent in this area, the individual must be able to:

• Describe, use and care for hand tools

LEARNING TASKS

1. Describe and apply good housekeeping as it relates to the care of hand tools

2. Use hand tools

CONTENT

- Storage
- Cleaning
- Sharpen
- Lubricate
- Pliers
- Wrenches
- Knives
- Hammers
- Bolt/wire cutters
- Presses
- Shovels
- Digging bars
- Spoons
- Tampers
- Axes
- Peavey/Cant hooks
- Semi-con stripper
- Insulation remover
- Propane torch

Achievement Criteria

Performance The learner will use and care for hand tools.

Conditions In a lab setting as part of a practical project.

Criteria The learner will:

- Select appropriate tools
- Maintain and store tools

Workplace Achievement Criteria

Given information on workplace situations, the learner must identify, describe and use hand tools in the workplace. Employer assessment of performance is required for each task.

Competency: D2 Use power tools

Objectives

To be competent in this area, the individual must be able to:

• Use and care for power tools.

LEARNING TASKS

CONTENT

- 1. Demonstrate use of electric power tools
- 2. Demonstrate use of hydraulic power tools
- Drills
- Chain saws
- Cable saws
- Drill
- Tamper
- Cutter
- Press
- Jacks
- Drill
- Chain saw

Wedge connections

4. Demonstrate use of powder-actuated wedge tools

3. Demonstrate use of gas power tools

Achievement Criteria

Performance The learner will use and care for power tools

Conditions In a lab setting as part of a practical project.

- Criteria The learner will:
 - Select appropriate tooling
 - Maintain and store tools

Workplace Achievement Criteria

Given information on workplace situations, the learner must identify, describe and use power tools in the workplace. Employer assessment of performance is required for each task.

•

35

Competency: D3 Use live line tools

Objectives

To be competent in this area, the individual must be able to:

• Describe, use and care for live line tools.

LEARNING TASKS

1. Describe the care and use of cover-up

2. Describe the care and use of rubber

3. Describe the care and use of fibre-reinforced plastic (FRP)

- 4. Describe the care and handling (transporting) of live line tools
- 5. Describe procedures for field checks of live line tools

CONTENT

- Cover-up equipment
 - Line guards
 - Arm guards
 - Pole guards
- Blankets
- Hoses
- Stick types
 - Universal
 - o Strain
 - Grip-all (shot-gun)
 - \circ Wire tong
 - o Insulator cradle
- Jibs for line/three-phase lift attachments
- Cleaning procedures
- Waxing procedures
- Insulated booms
- Inspections
- Stickers

Achievement Criteria

Conditions In a lab setting as part of a practical project.

- Criteria Learner will:
 - Select appropriate tools
 - Maintain and store tools

Workplace Achievement Criteria

Given information on workplace situations, the learner must identify and describe the use and care of live line tools in the workplace. Employer assessment of performance is required for each task.

Competency: D4 Use test instruments

Objectives

To be competent in this area, the individual must be able to:

• Describe, use and care for test instruments.

LEARNING TASKS

CONTENT

- 1. Describe care and use of various test instruments
- Multimeter
- Megger test set
- Phase sequence indicators
- Recording meters
- Fault indicator
- Cable locators
- Cable identifiers
- Transformer tester
- Potential testers

Achievement Criteria

Performance The learner will use and care for test instruments.

Conditions In a lab setting as part of a practical project.

- Criteria The learner will:
 - Select appropriate instruments
 - Maintain and store instruments

Workplace Achievement Criteria

Given information on workplace situations, the learner must identify, describe and use test instruments in the workplace. Employer assessment of performance is required for each task.

Competency: E1 Apply electrical fundamentals

Objectives

To be competent in this area, the individual must be able to:

• Describe and demonstrate the fundamentals of electrical theory and principles.

LEARNING TASKS

CONTENT

1. Describe basic principles of electricity

Electron theory

- Electromagnetic theory
- Alternating current fundamentals for single-phase
- Direct current fundamentals
- Ohm's law
- Watt's law
- Kirchoff's law
- Circuits
 - o Series
 - o Parallel
 - Combination
 - o Edison 3-wire

Competency: E3 Explain transformation and install transformers

Objectives

To be competent in this area, the individual must be able to:

- Explain single-phase transformers.
- Install single-phase transformers.

LEARNING TASKS

- 1. Describe the principles of operation of singlephase transformers
- 2. Describe single-phase transformer components and construction
- 3. Perform single-phase transformer calculations
- 4. Describe back-feed
- 5. Describe paralleling procedures
- 6. Describe open neutrals in single-phase transformer secondaries
- 7. Install single-phase transformers

CONTENT

- Principles of operation of single-phase transformers
- Single-phase transformer types
- Series and parallel
- Components of single-phase transformers
- Tap changers
- Single-phase transformer ratios
- Hazards and safety procedures related to back-feed
- Paralleling procedures
- Matching impedances
- Open neutrals
- Single-phase transformer secondaries
- Hazards and safety procedures
- Applicable codes and standards
- Transformer configurations
- Voltage check
- Load checks

Achievement Criteria

Performance The learner will install single-phase transformer.

Conditions In a lab setting as part of a practical project.

- Criteria The learner will:
 - Install transformer to specifications
 - Perform voltage checks
 - Use PPE

Workplace Achievement Criteria

Given information on workplace situations, the learner must install single-phase transformer in the workplace. Employer assessment of performance and logbook entry is required for each task.

Competency: E4 Install self-contained metering

Objectives

To be competent in this area, the individual must be able to:

- Identify and describe self-contained metering.
- Install self-contained meters.

LEARNING TASKS

CONTENT

- 1. Identify and describe components of selfcontained metering
- 2. Install single-phase meters
- 3. Identify smart meter infrastructure

- Meter components
- Meter socket safety checks
- Smart meter components

Achievement Criteria

Performance	The learner will perform meter socket safety checks.	
Conditions	In a lab setting as part of a practical project.	
Criteria	The learner will:	
	• Use PPE transformer to specifications	

- Use voltmeter
- Install self-contained meter

Line (GAC): F EQUIPMENT

Competency: F1 Identify mobile line equipment

Objectives

To be competent in this area, the individual must be able to:

• Identify and describe the operation of various types of mobile equipment.

LEARNING TASKS

- 1. Identify and describe various types of mobile line equipment
- Vehi

CONTENT

- Vehicles
 - o Road
 - o Rail
 - o All terrain
 - Track machines
- Trailers
- Aerial manlift equipment
- Boom truck equipment
 - Truck cranes
 - Pole derricks
- Digging and trenching equipment
 - Augers
 - o Backhoes
 - Excavators
 - Trenchers
- Boats
- Helicopters
- Basics of hydraulic systems and components
- Operating principles for hydraulic equipment
 - o Hiabs
 - o Truck cranes
 - o Aerial manlifts
 - Winches
 - o Augers
- Pre-use checks
- On-the-job checks
- Emergency operation of hydraulic booms and outriggers

2. Describe the operation of various mobile line equipment

Line (GAC): F EQUIPMENT

Competency: F2 Use hydraulically-equipped vehicles

Objectives

To be competent in this area, the individual must be able to:

• Use and care for hydraulically-equipped vehicles.

LEARNING TASKS

CONTENT

- 1. Operate hydraulically-equipped vehicles
- Hazards and safety procedures
- Emergency operations
- Routine operations
- Perform pre-use checks
- Perform on-job checks
- 2. Operate hydraulic equipment on vehicles
- Augers
- WinchesBuckets
- Booms

Achievement Criteria

- Performance The learner will use hydraulically-operated equipment.
- Conditions In a lab setting as part of a practical project.
- Criteria The learner will:
 - Set up and operate hydraulic equipment
 - Use fall arrest
 - Follow hand signals
 - Demonstrate emergency operations

Workplace Achievement Criteria

Given workplace situations, the learner must operate a hydraulically equipped vehicle. Employer assessment of performance is required for each task.

Line (GAC): G RIGGING

Competency: G1 Explain rigging, hoisting and lifting equipment

Objectives

To be competent in this area, the individual must be able to:

- Describe principles of work, force and mechanical advantage.
- Perform calculations related to rigging.

2. Perform calculations related to rigging

LEARNING TASKS

1. Identify and describe key principles related to rigging

CONTENT

- Force
 - Four types
- Work
- Mechanical advantage
 - Six basic types
- Friction
- Calculations
 - Force
 - o Work
 - Mechanical advantage
 - Friction

Workplace Achievement Criteria

Given workplace situations, the learner must identify and describe the application of rigging principles related to work, force and mechanical advantage, and perform related rigging calculations in the workplace. Employer assessment of performance is required for each task.

G Line (GAC): RIGGING G2

Competency:

Use lifting, rigging and hoisting equipment

Objectives

To be competent in this area, the individual must be able to:

Describe, use and care for lifting tools and equipment. ٠

LEARNING TASKS

- 1. Describe the fundamentals of rigging equipment
- Identify, describe, and use various types of lifting 2. tools and equipment

CONTENT

- Components
- Tools vs equipment •
- Design factor •
- Wire rope •
- Fibre rope •
- Chains .
- Hoists
- Blocks
 - Rope 0
 - Snatch 0
- Types and sizes of gins
 - Transformer 0
 - Cross-arm 0
- Approved hardware
 - Drop forged shackles 0
 - Hooks 0
 - Working load limit (WLL) and 0 size stamps
- Wire rope •
- Fibre rope •
- Synthetic rope •
- Hoists •
- Blocks .
- Chains .
- Design/safety factors •
- Shock loading •
- Slings •
- Shackles •
- WorkSafeBC Regulation
- Rigger's handbooks/manuals .
- Manufacturers' specifications •
- **Engineering specifications** •

3. Describe use and care of lifting tools and equipment

4. Identify, describe and use reference information sources for rigging

Achievement Criteria

Performance	The learner will use and care for all lifting tools and equipment.	
Conditions	In a lab setting as part of a practical project.	
Criteria	The learner will:	
	Apply rigging principles	

Apply rigging principles Select appropriate components

Workplace Achievement Criteria

Given workplace situations, the learner must use and care for lifting tools and equipment. Employer assessment of performance and logbook entry is required for each task.

Competency: H1 Describe overhead distribution materials

Objectives

To be competent in this area, the individual must be able to:

• Describe materials used in overhead distribution systems.

LEARNING TASKS

CONTENT

- 1. Identify and describe materials used in overhead distribution
- Poles
 - Height
 - Class
 - o Type
- Cross-arms and timbers
- Bolts
 - o Types
 - o Sizes
- Hardware to support conductors
 - o Sky pin
 - Arm pin
 - Clevis
- Insulators
- Hardware to support electrical apparatus
- Street light materials
- Guying materials
- Anchoring materials
- Conductors/cables
 - Types
 - o Sizes
- Dead-ending conductor materials
- Tying-in/clipping materials
- Connectors
 - Types
- Cellular infrastructure

Competency: H2 Describe overhead distribution systems

Objectives

To be competent in this area, the individual must be able to:

• Describe overhead distribution systems.

LEARNING TASKS

1. Identify and describe overhead distribution systems

CONTENT

- Under-construction or in-service
- Energized or de-energized
- Systems
 - o Wye
 - o Delta
 - Looped
 - o Radial
- Line voltage
- Line source and destination
- Circuit identifier
- Conductor type and size
- Basic structural type
- Pole mounted apparatus
- Use of circuit diagrams

Workplace Achievement Criteria

Given workplace situations, the learner must describe the overhead distribution systems. Employer assessment of performance and logbook entry is required for each task.

Competency: H3 Construct distribution lines

Objectives

To be competent in this area, the individual must be able to:

• Describe and construct overhead distribution lines.

LEARNING TASKS

1. Describe basic construction of overhead distribution lines

CONTENT

- Pole selection
 - Class
- Job planning
 - Work orders
- Public safety awareness
- Delivery of poles and materials
- Digging pole holes
- Pole framing for different structure types
- Installation of pole hardware
- Setting poles with line trucks
- Installation of various types of anchors
- Installation of guy wires
- Stringing and splicing conductors
- Installation of secondary services
- Securing conductors
- Installation and connecting system grounds

Achievement Criteria

Performance The learner will utilize methods of construction for overhead distribution lines.

Conditions In a lab setting as part of a practical project.

- Criteria The learner will:
 - Select materials
 - Follow specifications/standards

Workplace Achievement Criteria

Given workplace situations, the learner must describe and utilize methods of construction for overhead distribution lines. Employer assessment of performance and logbook entry is required for each task.

Competency: H4 Demonstrate safe work practices for live line work

Objectives

To be competent in this area, the individual must be able to:

- Describe safe work procedures for live lines.
- Describe the difference between a regulated utilities system and unregulated system.

LEARNING TASKS

CONTENT

1. Identify safe work practices

- Hazards
- Safe work practices
- Various types of structures
- Hazards
- Safe work practices
- Jurisdictional authority
 - o Federal Mines Act
 - WorkSafeBC
 - o BC Hydro
 - FortisBC
- Various work methods

Competency: H5 Maintain single-phase distribution lines

Objectives

To be competent in this area, the individual must be able to:

- Describe and use live line maintenance procedures.
- Maintain single-phase overhead distribution lines.

LEARNING TASKS

CONTENT

- 1. Describe and use single-phase live line procedures
- 2. Calculate weights and forces on tools and equipment
- General maintenance procedures for live line work
- Tools and rigging
- Conductor weights

Achievement Criteria

Performance The learner will use and care for all lifting tools and equipment.

Conditions In a lab setting as part of a practical project.

- Criteria The learner will be evaluated on:
 - Application of rigging principles
 - Component selection

Workplace Achievement Criteria

Given workplace situations, the learner must perform Live Line maintenance work on overhead single-phase distribution lines in the workplace. Employer assessment of performance is required for each task.

Line (GAC): I UNDERGROUND DISTRIBUTION (UD)

Competency:

UNDERGROUND DISTRIBUTION (UD)

I1 Use underground distribution (UD) equipment and materials

Objectives

To be competent in this area, the individual must be able to:

• Identify and describe equipment and materials used in underground distribution systems.

LEARNING TASKS

1. Identify and describe equipment and materials used in underground distribution

CONTENT

- Hardware
- Conductors
 - Sizes and types
 - Primary and secondary
- Connectors and covers
 - Primary and secondary
- Cable termination methods
 - Primary and secondary
- Tapes
- Approved solvents, cleaners and lubricants
- Parking cables and by-pass apparatus

 Feed-through module
- Secondary boxes
- Manholes
- Junction boxes
- Kiosks
- Switches
- Under-construction or in-service
- Energized or de-energized
- Distribution or transmission
- Single or three-phase
- Line voltage
- Line source and destination
- Line/circuit number
- Cable tags
- Phasing marks and colours
- Cable types
- Direct buried or in duct
- Cable protection
- Identify cable on one line diagrams
- Radial and loop feeds

2. Describe underground distribution power systems

Line (GAC): K COMMUNICATION

Competency: K1 Plan tailboard meetings

Objectives

To be competent in this area, the individual must be able to:

- Describe the purpose of tailboard meetings.
- Participate in tailboard meetings.

2. Participate in tailboard meetings

LEARNING TASKS

1. Identify and describe the function of tailboard meeting

CONTENT

- Crew duties
- Crew qualifications and experience
- Sequence and schedule of work
- Hazards and safety procedures
- Assessment and communication of potential hazards
- Monitoring progress of job
- Clear task assignments

Achievement Criteria

Performance	The learner will:

- Complete and present tailboard forms
- Engage crew in discussion
- Conditions In a lab setting as part of a practical project.

Criteria The learner will be evaluated on:

- Job specifications
- Hazard identification and mitigation
- Written and oral communication

Workplace Achievement Criteria

Given workplace situations, the learner must identify the purpose and necessity of tailboard meetings in the workplace. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): K COMMUNICATION

Competency: K2 Communicate using hand signals

Objectives

To be competent in this area, the individual must be able to:

• Use hand signals to communicate.

LEARNING TASKS

CONTENT

- 1. Use hand signals relevant to the workplace
- Types and meanings of hand signals
 - Stringing
 - Equipment lifts

Achievement Criteria

- Performance The learner will use hand signals.
- Conditions In a lab setting as part of a practical project.
- Criteria The

The learner will be evaluated on:

- Comprehension
- Communication

Workplace Achievement Criteria

Given workplace situations, the learner must effectively communicate using hand signals in the workplace. Employer assessment of performance and logbook entry is required for each task.

Line (GAC):KCOMMUNICATIONCompetency:K3Communicate using electronic devices and systems

Objectives

To be competent in this area, the individual must be able to:

• Communicate using electronic devices and systems.

LEARNING TASKS

CONTENT

- 1. Demonstrate the use of electronic communication systems
- Cellular telephones
- Two-way radios
- Email
- Computers
- Communications protocols
 - Repeat back protocols

Achievement Criteria

Performance The learner will use electronic communication devices.

Conditions In a lab setting as part of a practical project.

Criteria The learner will be evaluated on switching communication for authorization purposes.

Workplace Achievement Criteria

Given workplace situations, the learner must effectively communicate using electronic tools and systems in the workplace. Employer assessment of performance is required for each task.

Line (GAC):KCOMMUNICATIONCompetency:K5Apply communication techniques

Objectives

To be competent in this area, the individual must be able to:

- Describe methods of communication.
- Communicate with people.
- Apply reporting processes.

LEARNING TASKS

1. Describe methods of communication

Apply reporting processes

CONTENT

- Listening skills
- Questioning skills
- Following verbal directions
- Body language
- Written directions
- Trade terminology
- Interpersonal skills
- Professionalism
 - o Time management
 - o LEAN management principles
 - o Punctuality
 - Respect for authority
 - Stewardship of materials
 - Accepting constructive feedback
- Respect for customer property
- Respect for other trades
- Customers (layperson terms)
- Employer representation
- First impression
- Policies

•

- Safety considerations
- Emergency protocols
- Logbooks/diaries

2. Communicate with people

3.

Level 2

Powerline Technician

Competency: D4 Use test instruments

Objectives

To be competent in this area, the individual must be able to:

• Describe, use and care for advanced test instruments.

LEARNING TASKS

CONTENT

- 1. Identify and use advanced test instruments
- Phasing sticks
- DC Hi-Pot adapters
- Rubber glove voltage leakage tester
- Gas detectors
- Safety ground tester (Megger)

Achievement Criteria

- Performance The learner will:
 - Use test instruments
 - Maintain and care for test instruments
 - Use specialized PPE

Conditions In a lab setting as part of a practical project

Criteria The learner will be evaluated on:

- Accuracy
- Safety

Workplace Achievement Criteria

Given tasks and situations at work, the learner must demonstrate the use and care of advanced test instruments in the workplace. Employer assessment of performance is required for each task.

Competency: E1 Apply electrical fundamentals

Objectives

To be competent in this area, the individual must be able to:

• Apply advanced electrical theory.

LEARNING TASKS

1. Apply advanced principles of electricity

CONTENT

- Alternating current fundamentals for three phase
- Characteristics of Wye-connected systems
- Characteristics of Delta-connected systems
- Interconnections between Delta and Wye systems

Competency: E2 Describe operation of motors and generators

Objectives

To be competent in this area, the individual must be able to:

• Describe the operation of three-phase motors and generators.

LEARNING TASKS

- 1. Describe the operating characteristics of single and three-phase motors
- 2. Describe the effects of an open phase on a threephase motor under starting and under running conditions
- 3. Describe the effects of over and under voltage on motors
- 4. Describe the effects on a utility system of full voltage starting large motors
- 5. Describe the effects of voltage imbalance on three-phase motors

CONTENT

- Types of single and three-phase alternating current (A/C) motors
 Phase rotation
- Voltage conditions
- Voltage conditions
- Demand on-system conditions
- Motor performance

Competency: E3 Explain transformation and install transformers

Objectives

To be competent in this area, the individual must be able to:

- Apply three-phase transformation prinicples.
- Install three-phase transformer banks.

LEARNING TASKS

1. Apply principles and characteristics of threephase transformer banks

CONTENT

- Wye transformation systems
- Delta transformation systems
- Ferroresonance
- Calculating load checks
- Vectoring principles
- Phasor diagrams
- Circuits that create back-feed
- Hazards and safety procedures related to back-feed
- Phasing
- Paralleling
 - Angular displacement
- Energizing/De-energizing
- Sequence (rotation)
- Troubleshooting
- Hazards and procedures
- Codes and standards
- Transformer connections
 - o Wye system
 - o Delta system
- Voltage checks
- Load checks

•

- Paralleling three-phase transformers
 - Winding circuits
 - o Series/parallel
 - o Taps/multi-voltage

- 2. Apply three-phase transformer bank connections
- 3. Describe back-feed on three-phase transformer banks
- 4. Apply procedures and precautions for threephase transformer banks
- 5. Install three-phase transformer banks

Achievement Criteria

Performance The learner will:

- Install three-phase transformers
- Parallel three-phase transformers
- Use test instruments

Conditions In a lab setting as part of a practical project

Criteria The learner will be evaluated on:

- Safety
- Application of advanced electrical theory
- Use of test instruments

Workplace Achievement Criteria

Given workplace situations, the learner must install three-phase transformers/three-phase transformer banks in the workplace. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): G RIGGING

Competency: G3 Use rigging tools and equipment in construction and maintenance

Objectives

To be competent in this area, the individual must be able to:

• Apply rigging principles for construction and maintenance.

LEARNING TASKS

1. Apply rigging principles for construction and maintenance

CONTENT

- Weights and forces
- Tool and equipment requirements
- Procedures
- Manufacturers' and engineering specifications
 - o ASTM
 - o ASME
 - o ANSI
- Connecting devices
- Design factors
 - Working load limit (WLL) and size stamps
 - Manufacturers' ultimate tensile strength (UTS)
- WorkSafeBC Regulation
- Rigging manuals

Achievement Criteria

- Performance The learner will:
 - Apply rigging theory
 - Select appropriate rigging
- Conditions In a lab setting as part of a practical project.
- Criteria The learner will be evaluated on:
 - Care and maintenance of equipment
 - Use of rigging
 - Accuracy of applied theory

Workplace Achievement Criteria

Given workplace situations, the learner must demonstrate the use of rigging tools and equipment for distribution construction and maintenance in the workplace. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): G RIGGING

Competency: G4 Apply rigging tools and equipment for live line distribution

Objectives

To be competent in this area, the individual must be able to:

• Apply rigging tools and equipment for live line distribution.

LEARNING TASKS

1. Use tools and equipment for live line distribution rigging

CONTENT

- FRP sticks
- Slings
- Rope blocks
- Lever-operated hoists
- Capstan winches
- Hydraulic jibs and winches
- Rope principles
 - Selection
 - Care, storage and inspection
- Weights and forces of conductors
- Rated loads of lifting tools
- 2. Source and apply information for live line distribution rigging

Competency: H3 Construct distribution lines

Objectives

To be competent in this area, the individual must be able to:

- Construct overhead distribution lines using advanced methods.
- Demonstrate advanced grounding and equi-potential bonding principles.

LEARNING TASKS

1. Construct overhead distribution lines using advanced methods

CONTENT

- Engineering standards
- Line design
 - Surveying transit
 - o Structure Data Sheets (SDS)
 - Construction drawings
- Setting poles
 - o Conventional
 - Boom truck
 - o Unconventional
 - Helicopter
 - Specialized equipment
- Conductor sagging methods
- Dead-ending conductors
- Installing street lighting
- Stringing and splicing conductors
- Pole sets
- Cross-arm change
- Stringing conductors

Achievement Criteria

principles

- Performance The learner will:
 - Use methods of construction for overhead distribution lines
- Conditions In a lab setting as part of a practical project.
- Criteria The learner will be evaluated on:

2. Apply grounding and equi-potential bonding

- Select materials
- Follow specifications/standards
- Safely construct overhead distribution lines

Workplace Achievement Criteria

Given workplace situations, the learner must demonstrate advanced construction work methods and design of overhead distribution lines in the workplace. Employer assessment of performance is required for each task.

Competency: H6 Maintain three-phase distribution lines

Objectives

To be competent in this area, the individual must be able to:

- Apply live line maintenance procedures.
- Maintain three-phase overhead distribution lines.

LEARNING TASKS

- 1. Apply three-phase live line procedures while performing maintenance work
- 2. Calculate weights and forces on tools and equipment
- 3. Apply live line procedures for using powderactuated wedge-type connections

Achievement Criteria

Performance	The learner will:
1 UIIUIIIIaiiuu	The learner will.

- Use live line tools
- Calculate weights and forces
- Maintain limits of approach
- Perform live line work procedures

Conditions In a lab setting as part of a practical project

Criteria The learner will be evaluated on:

- Safety
- Accuracy of calculations
- Safe work practices
- Care and use of tools
- Tool selection

Workplace Achievement Criteria

Given workplace situations, the learner must perform Live Line maintenance work on three phase overhead distribution lines in the workplace. Employer assessment of performance is required for each task.

CONTENT

- Distribution Live Line Maintenance work procedures
- General maintenance procedures for Live Line work
- Tools and rigging
- Conductor weights and forces
- Installation of powder-actuated wedgetype connections

Competency: H7 Operate overhead distribution (OD) electrical apparatus

Objectives

To be competent in this area, the individual must be able to:

• Operate overhead distribution electrical apparatus.

LEARNING TASKS

1. Operate overhead distribution electrical apparatus

CONTENT

- Single disconnect switches
 - Fused
 - Solid
- Lightning arrestors
 - Function
- Street lighting apparatus
- Air brake switches

Achievement Criteria

Performance The learner will:

- Operate overhead apparatus
- Use specialized PPE/tools
- Conditions In a lab setting as part of a practical project.
- Criteria The learner will be evaluated on:
 - Safety
 - Sequence
 - Use of PPE/tools

Workplace Achievement Criteria

Given workplace situations, the learner install and operate overhead distribution electrical apparatus in the workplace. Employer assessment of performance is required for each task.

Line (GAC): I UNDERGROUND DISTRIBUTION (UD)

Competency: I1 Use underground distribution (UD) equipment and materials

Objectives

To be competent in this area, the individual must be able to:

• Use equipment and materials used in underground distribution systems.

LEARNING TASKS

CONTENT

1. Use equipment and materials for underground distribution

- Switchgear
- Live-front and dead-front equipment
- Cable types
 - Concentric neutral
 - Shielded
 - Non-shielded
- One-line diagrams
- Material selection
- Under-construction or in-service
- Energized or de-energized
- Distribution or transmission
- Line voltage
- Line source and destination
- Line designation
- Cable tags
- Phasing marks and colours
- Cable types
 - \circ Concentric neutral
 - o Shielded
 - Non-shielded
- Direct buried or in duct
- Cable protection
 - On poles
 - Under roads
- One-line diagrams
 - o Radial
 - Loop feeds
- Faulted circuit indicator (FCI)

2. Determine status of single and three-phase underground distribution systems

Line (GAC): I UNDERGROUND DISTRIBUTION (UD)

Competency: I2 Construct underground distribution systems

Objectives

To be competent in this area, the individual must be able to:

- Construct underground distribution systems.
- Access underground distribution systems.

LEARNING TASKS

1. Describe basic underground distribution (UD) system components

CONTENT

- Electrical and civil drawings
- System grounding/neutral connections
- Terminal poles
- Junction boxes
- Vaults and pull boxes
- Switching kiosks
- Secondary boxes
- Testing
- Ventilation
- Monitoring
- Rescue plans
- Grounding mat
- Feed-throughs
- Grounding elbows
- Single and three-phase
- Socks
- Capstans
- Single and three-phase underground distribution (UD) services
- Cable identifier
- Tug test
- Work orders
- Drawing and schematics review
- Plans and procedures
- Terminal pole
- Vista
- Standards
- Junction box
- Elbows
- Terminators
- Splices

2. Describe procedures for entering underground (UG) confined spaces

- 3. Apply grounding and equi-potential bonding principles
- 4. Install primary and secondary cables
- 5. Identify phases and cable
- 6. Participate in job planning
- 7. Install apparatus
- 8. Perform cable terminations

Achievement Criteria

Performance The learner will:

- Access workspace
- Apply grounding and equi-potential bonding
- Install underground apparatus
- Use underground tools and test instruments

Conditions In a lab setting as part of a practical project.

Criteria The learner will be evaluated on:

- Safety
- Installation of apparatus
- Selection and use of tools and equipment
- Written and verbal communication

Workplace Achievement Criteria

Given workplace situations, the learner must demonstrate methods and procedures for constructing underground distribution systems in the workplace. Employer assessment of performance is required for each task.

Line (GAC): I UNDERGROUND DISTRIBUTION (UD)

Competency: I3 Maintain underground distribution systems

Objectives

To be competent in this area, the individual must be able to:

• Maintain underground distribution sytems.

LEARNING TASKS

CONTENT

1. Identify grounding and equi-potential bonding requirements for underground distribution (UD) systems

2. Apply grounding and equi-potential bonding

- Grounding procedures
- Tagging procedures
- Grounding kits
- Hazard identification
- Underground distribution (UD) standards
- Test for potential
- Tag-out/lock-out procedures
- Tools and equipment

Achievement Criteria

Performance The learner will:

- Access workspace
- Apply grounding and equi-potential bonding
- Install underground apparatus
- Use underground tools and test instruments

Conditions In a lab setting as part of a practical project.

Criteria The learner will be evaluated on:

- Safety
- Installation of apparatus
- Selection and use of tools and equipment
- Written and verbal communication

Workplace Achievement Criteria

Given workplace situations, the learner must select, identify and apply procedures for underground distribution systems in the workplace. Employer assessment of performance is required for each task.

Line (GAC): K COMMUNICATION

Competency: K1 Plan tailboard meetings

Objectives

To be competent in this area, the individual must be able to:

• Lead a basic tailboard meeting.

LEARNING TASKS

1. Plan and prepare a tailboard meeting

CONTENT

- Crew duties
- Crew complement, qualifications and experience
- Sequence and schedule of work
- Hazard identification and risk assessment
- Safety procedures
- Tooling and equipment requirements
- Calculations of weights and forces
- Limits of approach
- Potential hazard assessment
- Work methods
- Communication
- Monitoring of job progress
- Task assignments

Achievement Criteria

Performance Th	e learner will
----------------	----------------

- Complete and present tailboard forms
- Engage crew in discussion
- Conditions In a lab setting as part of a practical project.
- Criteria The learner will be evaluated on:
 - Job specifications
 - Hazard identification and mitigation
 - Written and oral communication

Workplace Achievement Criteria

Given workplace situations, the learner must be able to plan, prepare and lead tailboard meetings as needed a in the workplace.

- 2. Execute and debrief tailboard meetings

Line (GAC): K COMMUNICATION

Competency: K4 Apply communication protocols and requirements

Objectives

To be competent in this area, the individual must be able to:

• Apply communication protocols and requirements.

LEARNING TASKS

CONTENT

- 1. Identify protocols and requirements
- Authorities
 - Provincial regulatory
 - Power system
 - o Emergency services

2. Apply protocols

- Workplace accident
- Incidents
- Reporting requirements
- Job-related terminology
- Scene lockdown

Workplace Achievement Criteria

Given workplace situations, the learner must demonstrate methods and skills for communicating with jurisdictional authorities, power system authorities, emergency services, co-workers and other disciplines in the workplace. Employer assessment of performance is required for each task.

Level 3 Powerline Technician

Competency: E5 Install transformer metering

Objectives

To be competent in this area, the individual must be able to:

• Select and install three-phase meters.

LEARNING TASKS

- 1. Explain the use of and precautions required for potential and current three-phase transformers in primary and secondary metering
- 2. Install and perform meter socket safety checks
- 3. Select meters for various installations
- 4. Select CTs and PTs
- 5. Install meters
- 6. Describe power factor

CONTENT

- Potential and current in three phase transformers
- Primary and secondary metering
- Primary and secondary metering
- Three-phase meter operation
- Self-contained
- Transformer
- Current transformers
- Potential transformers
- 400 A single-phase
- Canadian Electrical Code (CEC)
- Effects of power factor on electric circuits
- Power factor correction
- Power factor calculation
- Power factor formula and power triangle

Achievement Criteria

Performance	The learner will:
1 offorfinding c	The rearrest time

- Apply metering theory
- Install transformer metering
- Use tools and tests instruments

Conditions In a lab setting as part of a practical project.

- Criteria The learner will be evaluated on:
 - Accuracy of calculations
 - Meter selection
 - Properties of tools and test instruments
 - Safety

Workplace Achievement Criteria

Given workplace situations, the learner must select, install and accurately read three phase meters in the workplace. Employer assessment of performance is required for each task.

Line (GAC): F EQUIPMENT

Competency: F3 Use stringing equipment

Objectives

To be competent in this area, the individual must be able to:

• Describe conductor stringing equipment.

LEARNING TASKS

1. Describe stringing of conductors

CONTENT

- Tension stringing
- Non-tension stringing
- Sagging
- Reeling out of conductors
- Conductor splicing
- Double socking
- Setting up puller and tension sites
- Reel trailers
- Wire tensioners
- Pullers
- Stringing sheaves and blocks
- Finger lines
- Pulling lines
- Pulling line accessories
 - Swivels
 - Kellum grips
 - o Clevis
- Equi-potential grounding & bonding

Workplace Achievement Criteria

Given workplace situations, the learner must demonstrate the use of conductor stringing equipment in the workplace. Employer assessment of performance is required for each task.

2. Describe stringing tools and equipment

Line (GAC): G RIGGING

Competency:

G5 Use rigging tools and equipment in transmission, construction and maintenance

Objectives

To be competent in this area, the individual must be able to:

- Identify and describe lifting equipment, resources and components for transmission lines.
- Use lifting components involved in transmission.

LEARNING TASKS

- 1. Identify hardware, equipment, tackle and slings used in standard rigging practices for transmission
- 2. Identify slinging methods for transmission lines
- 3. Calculate weights and forces

CONTENT

- Shackles and hooks
- WLL and size stamps
- Chains and slings
- Rigging equipment
- Rigging calculations
- Rigger's handbook
- Manufacturers' and engineering specifications
- Load weights of transmission conductors
- Manufacturers' UTS

Achievement Criteria

- Performance The learner will:
 - Apply rigging theory
 - Select appropriate rigging
- Conditions In a lab setting as part of a practical project
- Criteria The learner will be evaluated on:
 - Care and maintenance of equipment
 - Use of rigging
 - Accuracy of applied theory

Line (GAC): G RIGGING

Competency: G6 Perform live line transmission rigging

Objectives

To be competent in this area, the individual must be able to:

- Describe the procedures and equipment used in live line transmission rigging.
- Perform live line rigging.

LEARNING TASKS

1. Describe rigging tasks

2. Calculate weights and forces

CONTENT

- Tool selection
- Voltages and structures
 - o 138 kV timber change
 - 230 kV dead end insulator change
 - 0 138 kV wish bone timber change
 - 138 kV medium angle insulator string change
- Calculate the weights and forces
- Voltages and structures
 - \circ 138 kV timber change
 - o 230 kV dead-end insulator change
 - o 138 kV wish bone timber change
 - 138 kV medium angle insulator string change
- Voltages and structures
 - 138 kV timber change
 - o 230 kV dead end insulator change
 - \circ 138 kV wish bone timber change
 - 138 kV medium angle insulator string change

3. Demonstrate rigging

Achievement Criteria

Performance	The learner will:	
	Apply rigging theory	
	 Select appropriate rigging 	
Conditions	In a lab setting as part of a practical project.	
Criteria	The learner will be evaluated on:	

- Care and maintenance of equipment
- Use of rigging
- Use of figging
- Accuracy of applied theory

Workplace Achievement Criteria

Given workplace situations, the learner must be able to use tools and procedures to perform live line work transmission rigging. Employer assessment of performance and logbook entry is required for each task.

Line (GAC): I UNDERGROUND DISTRIBUTION (UD)

Competency: I4 Operate underground distribution electrical apparatus

Objectives

To be competent in this area, the individual must be able to:

• Operate underground distribution electrical apparatus.

LEARNING TASKS

CONTENT

- 1. Describe operation of underground electrical apparatus distribution
- Installation procedures for underground distribution (UD) switching apparatus
- Operation of underground (UD) switching apparatus
- Maintenance procedures for underground distribution (UD) switching apparatus
- VISTAS/SF6 switching kiosks
- Vacuum interruptors
- Live fronts
- Dead fronts
- VISTAS/SF6 switching kiosks
- Vacuum interruptors
- Live fronts
- Dead fronts

- 2. Install switches
- 3. Demonstrate underground distribution switching
- Achievement Criteria
- Performance The learner will:
 - Operate underground apparatus
 - Use specialized PPE/tools
- Conditions In a lab setting as part of a practical project.
- Criteria The learner will be evaluated on:
 - Safety
 - Sequence
 - Use of PPE/tools

Workplace Achievement Criteria

Given workplace situations, the learner must install various electrical apparatus involved in underground distribution. Employer assessment of performance is required for each task.

Competency: J1 Describe transmission materials

Objectives

To be competent in this area, the individual must be able to:

• Describe materials used in transmission.

LEARNING TASKS

1. Describe pole/structure materials

CONTENT

.

- Wood
 - Pole classes
- Steel
- 2. Identify materials and hardware for wood pole transmission lines
- 3. Identify material and hardware for steel/aluminum structure transmission lines
- 4. Identify suspension and dead-ending material
- 5. Identify insulator types
- 6. Identify types and sizes of conductors used for transmission line voltages
- 7. Identify types of connectors, sleeves
- 8. Identify wire dead-end material
- 9. Identify cellular sites

- Voltage and structures
 - 60 kV triangular construction
 - $\circ \quad 138 \, \text{kV} \, \text{wishbone construction}$
- Voltage and structures
 - o 230 kV guyed Y
 - o 500 kV self supporting A
- Suspension and dead-ending material and hardware
- Pin
- Post
- Ball & socket
- kV, kg rating
- Aluminium conductor steel reinforced (ACSR)
- Aluminium alloy conductor (AAC)
- Compression
- Bolted
- Clamps
- Compression
- Cellular infrastructure

Competency: J2 Construct transmission lines

Objectives

2.

3.

4.

To be competent in this area, the individual must be able to:

• Construct transmission lines.

LEARNING TASKS

1. Describe transmission line design

CONTENT

- Basic survey equipment
- Job plan
- Structure Data Sheets (SDS)
- Construction drawings
- Identify crossings (road or rail)
- Digging pole holes (proper depth etc.)
- Pole setting with line truck, crane truck or other equipment
- Setting of poles by helicopter
- Helicopter operation
- Installation of rider poles
- Arc reach
- Pole-band transitioning
- Grounding site
- Bonding zone
- Monitoring
- Framing structures
- Setting structures
- Erecting structures
- Conductor installation

Achievement Criteria

•

- Use methods of construction for overhead transmission lines
- Conditions In a lab setting as part of a practical project Criteria The learner will be evaluated on:

Apply grounding and equi-potential bonding

Construct transmission structures

- Select materials
- Follow specifications/standards
- Safely construct overhead transmission lines

Workplace Achievement Criteria

Given workplace situations, the learner must construct transmission lines as per protocol. Employer assessment of performance is required for each task.

principles

Describe equipment

Competency: J3 Maintain transmission lines

Objectives

To be competent in this area, the individual must be able to:

- Describe overhead maintenance procedures.
- Perform overhead transmission maintenance procedures.

LEARNING TASKS

maintenance

2.

CONTENT

1. Describe inspection methods

Perform overhead transmission

- Public safety checks
- Structure and site inspections
 - Structure
 - Insulator
 - Anchor
- Structure changes
 - Pole structure
 - Steel lattice
 - Guying and anchoring
- Insulator and line hardware change
 - Spacers
 - o Armor rod
 - o Dampeners
 - Timber or X-arm changes
- Conductor
 - o Splicing
 - $\circ \quad \text{Patch rod} \quad$
 - o Dead-ending

Achievement Criteria

- PerformanceThe learner will:
• Use methods of construction for overhead transmission linesConditionsIn a lab setting as part of a practical project.CriteriaThe learner will be evaluated on:
 - Select materials
 - Follow specifications/standards
 - Safely construct overhead transmission lines

Workplace Achievement Criteria

Given workplace situations, the learner must maintain transmission lines as per protocol. Employer assessment of performance is required for each task.

Competency: J4 Operate transmission electrical apparatus

Objectives

To be competent in this area, the individual must be able to:

• Operate transmission electrical apparatus.

LEARNING TASKS

CONTENT

- 1. Describe operation of transmission electrical apparatus
- Gang-operated air brake switches
- Supervisory-controlled equipment
- Ground switches
- Capacitor stations
- Submarine and underground transmission cable
- Grid interconnections

Achievement Criteria

Performance The learner will:

- Operate overhead transmission apparatus
- Use specialized PPE/tools

Conditions In a lab setting as part of a practical project.

Criteria The learner will be evaluated on:

- Safety
- Sequence
- Use of PPE/tools

Workplace Achievement Criteria

Given workplace situations, the learner must install, operate and maintain electrical apparatus for transmission as per protocol. Employer assessment of performance is required for each task.

Line (GAC): K COMMUNICATION

Competency: K1 Plan tailboard meetings

Objectives

To be competent in this area, the individual must be able to:

• Lead a complex tailboard meeting.

LEARNING TASKS

CONTENT

1. Plan and prepare a tailboard meeting

Execute and debrief tailboard meetings

- Crew duties
- Crew complement, qualifications and experience
- Sequence and schedule of work
- Hazard identification and risk assessment
- Safety procedures
- Tooling and equipment requirements
- Weights and forces calculations
- Limits of approach
- Potential hazard assessment
- Work methods
- Communication
- Monitoring job progress
- Task assignments

Achievement Criteria

2.

- Complete and present tailboard forms
- Engage crew in discussion
- Conditions In a lab setting as part of a practical project.
- Criteria The learner will be evaluated on:
 - Job specifications
 - Hazard identification and mitigation
 - Written and oral communication

Workplace Achievement Criteria

Given workplace situations, the learner must be able to plan, prepare and lead tailboard meetings as needed a in the workplace.

Level 4 Powerline Technician

Competency: E6 Describe system operation and protection

Objectives

To be competent in this area, the individual must be able to:

• Describe system operation and protection.

LEARNING TASKS

1. Describe substation operation

CONTENT

- Main components of substations
 - o Circuit breakers
 - o Bus bar arrangements
- Simple substation schematics
- Station service
- Co-ordination
 - o Fuses
 - Circuit breakers
 - Reclosers
 - Sectionalizer
- Arrestors
- Fault indicators
- Reactors
- Field switching
 - o Radial
 - \circ Looped
 - o Overhead
 - o Underground
- Paralleling feeders
 - Looped
- Time delay
- Protection schemes
- Switching
- Configurations

2. Describe system protection

3. Describe system operation

Describe recloser operation

4.

Competency: E7 Perform system switching

Objectives

To be competent in this area, the individual must be able to:

• Perform system switching.

LEARNING TASKS

1. Perform switching

CONTENT

- Electrical utility print reading
- Field switching order requirements
 - Overhead
 - Underground
- Transfer bus
- Fused-switch operation and coordination
- Isolation or de-energization devices
- Gang-operated air-break switches
- Single solid-blade disconnects
- Field pot-head disconnects and sectionalizers
- Load and non-load break switches and cutouts
- Paralleling feeders

Achievement Criteria

- Performance The learner will:
 - Use single-line diagrams to create a switching plan
 - Prepare and communicate switching orders
 - Operate apparatus

Conditions In a lab setting as part of a practical project.

- Criteria The learner will be evaluated on:
 - Written and verbal communication
 - Safety
 - Accuracy
 - Use of specialized PPE/tools

Competency: E8 Operate voltage regulators and capacitors

Objectives

To be competent in this area, the individual must be able to:

- Operate voltage regulators.
- Operate capacitors.

LEARNING TASKS

1. Describe voltage regulators

2. Describe capacitors

- 3. Operate voltage regulators
- 4. Operate capacitors

CONTENT

- Voltage regulator construction
 - o Bridging reactor
 - Steps/taps
 - o Bandwidth hi/low
- Types and ratings
 - o Bi-directional
- Characteristics
 - Power factor correction
 - Switching
 - Grounding
- Field capacitor types
 - Fused capacitors
 - Switch capacitors
- Installation
- Removal
- By-passing
- Maintenance
 - Switching
- Installation
- Removal
- Maintenance
 - Switching

Achievement Criteria

Performance	The learner will:
	Operate regulators
	Test capacitors
Conditions Criteria	In a lab setting as part of a practical project. The learner will be evaluated on:

- Switching sequence
- Tool selection
- Safety

Line (GAC): F EQUIPMENT

Use stringing tools and equipment

Competency: F3 Use stringing equipment

Objectives

2.

To be competent in this area, the individual must be able to:

• Use stringing equipment.

LEARNING TASKS

1. String conductors

CONTENT

- Tension stringing
- Non-tension stringing
- Sagging
- Reeling out of conductors
- Conductor splicing
- Double socking
- Setting up puller and tension sites
- Reel trailers
- Wire tensioners
- Pullers
- Stringing sheaves and blocks
- Pilot/finger lines
- Pulling lines
- Pulling line accessories
 - Swivels
 - Kellum grips
 - Clevis
- Equi-potential grounding & bonding

Workplace Achievement Criteria

Given information on workplace situations, the learner must identify, describe and use stringing tools and equipment in the workplace. Employer assessment of performance is required for each task.

Line (GAC): H OVERHEAD DISTRIBUTION (OD)

Competency: H6 Maintain three-phase distribution lines

Objectives

2.

To be competent in this area, the individual must be able to:

- Describe high-voltage rubber glove methods.
- Perform high-voltage rubber glove methods.

LEARNING TASKS

1. Describe high-voltage rubber glove methods

Perform high-voltage rubber glove methods

CONTENT

- Testing
 - Cover-up
 - Gloves
 - o Truck
- Second-point contact
- Use of FRPs
- Procedures
 - Conductor splicing
 - Insulator replacement
- Testing
 - Cover-up
 - Gloves
 - Truck
- Second-point contact
- Use of FRPs
- Procedures
 - Conductor splicing
- Insulator replacement

Achievement Criteria

- Performance The learner will:
 - Use rubber glove equipment
 - Calculate weights and forces
 - Maintain limits of approach
 - Perform live line work procedures

Conditions In a lab setting as part of a practical project.

Criteria The learner will be evaluated on:

- Safety
- Accuracy of calculations
- Safe work practices
- Care and use of equipment
- Equipment selection

Line (GAC): H OVERHEAD DISTRIBUTION (OD)

Competency: H7 Operate overhead distribution (OD) electrical apparatus

Objectives

To be competent in this area, the individual must be able to:

• Operate overhead distribution electrical apparatus.

LEARNING TASKS

1. Operate overhead distribution electrical apparatus

CONTENT

- Gang-operated air brake switches
- Circuit reclosers
- Sectionalizers
- Capacitors
- Voltage regulators
- Circuit breakers
- Supervisory-operated switches

Achievement Criteria

- Performance The learner will:
 - Operate overhead apparatus
 - Use specialized PPE/tools
- Conditions In a lab setting as part of a practical project.
- Criteria The learner will be evaluated on:
 - Safety
 - Sequence
 - Use of PPE/tools

Line (GAC): H OVERHEAD DISTRIBUTION (OD)

Competency:

OVERITEAD DISTRIBUTION (OD)

H8 Troubleshoot overhead distribution system components

Objectives

2.

To be competent in this area, the individual must be able to:

• Troubleshoot overhead distribution system components.

LEARNING TASKS

1. Identify causes of trouble

CONTENT

- Common causes of trouble
 - Weather
 - o MVA
 - Animal/birds
 - Equipment failure
- One line diagrams and local maps
- Area/location of trouble
- Area/customers affected
- Switching locations
- Grounding procedures
- Line patrol

Describe troubleshooting process

Workplace Achievement Criteria

Given workplace situations, the learner must perform trouble shooting procedures on System Components. Employer assessment of performance is required for each task.

Line (GAC): I UNDERGROUND DISTRIBUTION (UD)

Competency:

UNDERGROUND DISTRIBUTION (UD)

I5 Troubleshoot underground distribution system components

Objectives

2.

To be competent in this area, the individual must be able to:

• Troubleshoot overhead distribution system components.

LEARNING TASKS

1. Identify causes of trouble

CONTENT

- Dig-ins
- Equipment failure
- Weather
- MVA
- One-sline diagrams and local maps
- Area/location of trouble
- Area/customers affected
- Switching locations
- Grounding procedures
- Fault location

Describe troubleshooting process

Workplace Achievement Criteria

Given workplace situations, the learner must perform trouble shooting procedures on System Components. Employer assessment of performance is required for each task.

Competency: J3 Maintain transmission lines

Objectives

To be competent in this area, the individual must be able to:

• Describe bare hand methods.

LEARNING TASKS

1. Describe bare hand methods

CONTENT

- Testing
 - o Suit
 - Truck
- Second-point contact
- Access methods
- Use of FRPs

Line (GAC):JTRANSMISSIONCompetency:J5Troubleshoot overhead transmission system components

Objectives

2.

To be competent in this area, the individual must be able to:

• Troubleshoot overhead transmission system components.

LEARNING TASKS

1. Identify causes of trouble

CONTENT

- Common causes of trouble
 - Weather
 - o MVA
 - o Animal/birds
 - o Equipment failure
- One line diagrams and local maps
- Area/location of trouble
- Area/customers affected
- Switching locations
- Grounding procedures
- Line patrol

Describe troubleshooting process

Workplace Achievement Criteria

Given workplace situations, the learner must perform trouble shooting procedures on System Components. Employer assessment of performance is required for each task.

Line (GAC): K COMMUNICATION

Competency: K6 Apply mentoring techniques

Objectives

To be competent in this area, the individual must be able to:

- Describe mentoring techniques.
- Apply mentoring techniques.

LEARNING TASKS

1. Describe mentoring techniques

CONTENT

- Listening skills
- Questioning skills
- Body language
- Coaching
- Written directions
- Trade terminology
- Interpersonal skills
 - Encouragement
 - Explaining
 - Following up
 - Demonstrating
 - Leading by example
 - Respect for others
 - Professionalism
 - o Time management
 - o LEAN management principles
 - o Punctuality
 - Respect for authority
 - Stewardship of materials
 - Constructive feedback
 - Apprentice documentation
 - Customers (layperson terms)
 - Employer representation
 - Identify learning needs
 - Teaching techniques
 - o Patience
 - $\circ \quad \ \ {\rm Clear\ explanations}$
 - Linking lessons
 - o Allow practice

2. Apply mentoring techniques

Section 4 ASSESSMENT GUIDELINES

Level 1 Grading Sheet: Subject Competency and Weightings

PROGRAM:Powerline TechnicianIN-SCHOOL TRAINING:LEVEL 1				
LINE	TRAINING TOPICS		THEORY WEIGHTING	PRACTICAL WEIGHTING
А	SAFETY AND SAFE WORK F	PRACTICES	17%	14%
В	CLIMBING		12 %	14%
С	POLICIES AND REGULATIONS		8%	0%
D	TOOLS AND INSTRUMENTS		9%	14%
Е	ELECTRICAL THEORY		15%	16%
F	EQUIPMENT		0%	9%
G	RIGGING		10%	5%
Н	OVERHEAD DISTRIBUTION (OD)		16%	14%
Ι	UNDERGROUND DISTRIBUTION (UD)		8%	0%
K	COMMUNICATION		5%	14%
	Total		100%	100%
Calculated by the Training Provider Powerline Technician in-school theory & practical subject competency weighting		60%	40%	
Training Provider enters final in-school mark into SkilledTradesBC Portal		Х	%	

Calculated by SkilledTradesBC: In-school Mark SkilledTradesBC Portal calculates the percentage weighting once the in- school mark is entered. Combined theory and practical subject competency multiplied by	80%
Calculated by SkilledTradesBC: Standard Level Exam Mark SkilledTradesBC Portal will calculate the percentage weighting once the standard level exam marks have been entered. The exam score is multiplied by	20%
Calculated by SkilledTradesBC: Final Mark The final mark for determining credit is calculated by SkilledTradesBC Portal.	FINAL%

Level 2 Grading Sheet: Subject Competency and Weightings

PROGR IN-SCH	PROGRAM: Powerline Technician IN-SCHOOL TRAINING: LEVEL 2			
LINE	TRAINING TOPICS		THEORY WEIGHTING	PRACTICAL WEIGHTING
D	TOOLS AND INSTRUMENT	S	9%	8%
Е	ELECTRICAL THEORY		22%	8%
G	RIGGING		16%	20%
Н	OVERHEAD DISTRIBUTION (OD)		24%	27%
Ι	UNDERGROUND DISTRIBU	JTION (UD)	21 %	23%
K	COMMUNICATION		8%	14%
	Total		100%	100%
Calculated by the Training Provider Powerline Technician in-school theory & practical subject competency weighting		60%	40%	
Trainin Portal	g Provider enters final in-sch	ool mark into SkilledTradesBC	x	%

Calculated by SkilledTradesBC: In-school Mark SkilledTradesBC Portal calculates the percentage weighting once the in- school mark is entered. Combined theory and practical subject competency multiplied by	80%
Calculated by SkilledTradesBC: Standard Level Exam Mark SkilledTradesBC Portal will calculate the percentage weighting once the standard level exam marks have been entered. The exam score is multiplied by	20%
Calculated by SkilledTradesBC: Final Mark The final mark for determining credit is calculated by SkilledTradesBC Portal.	FINAL%

Level 3 Grading Sheet: Subject Competency and Weightings

PROGR IN-SCH	PROGRAM: Powerline Technician IN-SCHOOL TRAINING: LEVEL 3			
LINE	TRAINING TOPICS		THEORY WEIGHTING	PRACTICAL WEIGHTING
Е	ELECTRICAL THEORY		27%	27%
F	EQUIPMENT		0%	0%
G	RIGGING		29%	18%
Ι	UNDERGROUND DISTRIBUTION (UD)		16%	23%
J	TRANSMISSION		23%	20%
K	COMMUNICATION		5%	12%
	Total		100%	100%
Calculated by the Training Provider Powerline Technician in-school theory & practical subject competency weighting		50%	50%	

Final in-school percentage score	
Apprentices must achieve a minimum 70% as the final in-school percentage score to be eligible to write the Interprovincial Red Seal or SkilledTradesBC CofQ exam.	IN-SCHOOL %

Level 4 Grading Sheet: Subject Competency and Weightings

PROGRAM: IN-SCHOOL TRAINING:		Powerline Technician LEVEL 4		
LINE	TRAINING TOPICS		THEORY WEIGHTING	PRACTICAL WEIGHTING
Е	ELECTRICAL THEORY		30%	30%
F	EQUIPMENT		5%	0%
Н	OVERHEAD DISTRIBUTION		30%	40%
Ι	UNDERGROUND DISTRIBUTION		10%	30%
J	TRANSMISSION		10%	0%
K	COMMUNICATION		15%	0%
	Total		100%	100%
Calculated by the Training Provider Powerline Technician in-school theory & practical subject competency weighting			50%	50%

All apprentices who complete Level 4 of the Powerline Technician program with a FINAL level percentage score of 70% or greater will write the Interprovincial Red Seal examination as their final assessment.

SkilledTradesBC will enter the apprentices' Powerline Technician Interprovincial Red Seal examination percentage score in SkilledTradesBC Portal.

A minimum percentage score of 70% on the examination is required for a pass.

Section 5 TRAINING PROVIDER STANDARDS

Facility Requirements

Classroom Area

- 900 sq. ft. classroom
- 14 networked computer workstations + 1 for the instructor
- Instructional media to include multimedia projector, projection screen, DVD player, flipchart and whiteboard

Indoor Lab Training Area

- 450 sq. ft. for each class
 - o Low voltage simulator
 - o Primary metering installations
- 900 sq. ft. for each class
 - o Underground distribution equipment
 - o Cable termination
 - o Splicing
 - Well heated and ventilated
- Lighting appropriate to detailed work

Outdoor Training Yard

- 3 acres (approx) for a class of 14 students
- Simulated overhead power distribution system
- Simulated overhead power transmission system
- Simulated underground distribution system
- Simulated substation

Instructor's Office Space

• 80 sq. ft. per instructor, with a desk, chairs and materials storage / filing system

Storage

•

- 800 sq. ft. indoor materials storage
- 5,000 sq. ft. outdoor storage
 - o Pole bunks
 - o Parking for specialized vehicles and equipment

Tools and Equipment

Hand Tools

Allen keys Bolt cutters Broom Cable cutters Cable Jacks Cant hook Chain jacks Compression tools (M-D6, Y-35, Y-45, etc.) Crow bar Digging bar Digging spade Drill bits Files

Personal Protective Equipment

Climbing gear
Face shield
Fire-retardant clothing
Flash glasses
Hard hat and two-point chin strap
Harness to meet WorkSafeBC regulations

Safety Equipment

Barricades Breathing protection Bucket / tower rescue and descent equipment Caution tape Cones Confined space evacuation equipment Fire blankets Fire extinguisher First-aid equipment

- Hack saw Hammers Knives Levels Pliers - nine inch Pliers - needle-nose Nut drivers Peavey Pick Plumb bob Screwdrivers Shovel Sledge hammer Vice Wire cutters Wrenches
- Hearing protection Insulated gloves Leather gloves Rubber gloves Safety glasses Safety-toe footwear Safety vest
- Fume and toxic gas detector Grounding devices Grounding mat Insulated gloves Life lines Plastic line guards Plastic pole guards Pole-top rescue equipment Rescue devices Rubber protective cover-up Wheel chocks

Live Line Tools

Auxiliary arm and insulators By-pass jumper Cut-out covers Elbow puller Hot sticks-clamp, grip all, P-2 Insulated web hoist Insulator support Live line cutters Load break tool Rubber blankets Rubber hoses/cover up Spiral link sticks Sticks and attachments

Electrical Measuring Equipment

Cable identifier Continuity tester Current leakage meter Energized insulator tester Ground resistance tester High-voltage phasing sticks Megger

Power Tools

Battery drill Chain saw Gas drill Hydraulic cutters

Specialty Tools and Equipment

Cable locator Cable stripper Powder-actuated tool Feed through device Gaff gauge Ground rod driver

Aerial Work Platforms

Fibreglass ladders Insulated pole platform (diving board) Ohm meter Potential testing meter Rotation meter Transformer tester Voltage/amp meters • Digital and analog

Hydraulic drill Hydraulic/electric press (Y-35, Y-45) Hydraulic ground rod pounder Portable generator

Infrared gun Insulated telescopic (40 ft.) work stick Reel jacks Running ground Silicon cloth

Material Handling Aerial Device (MHAD)

Rigging, Hoisting and Lifting Equipment

Block and tackle Boom truck (RBD) Capstan hoist Dynamometer Hand line Hoists Pole jack (butt puller) Slings / grips Kellum grip

Communication Equipment

Cellular phone Computer Fax machine Pager Printer Telephone Two-way radio

Reference Materials

The following list of textbooks and learning materials may be needed to enhance the technical training component of the Powerline Technician Apprenticeship program.

Required Reference Materials

- WorkSafe BC Regulations Online
- Delmar's Standard Textbook of Electricity Current Edition; S.L. Delmar, Thompson Delmar Learning
- The Lineworker's Rigging Handbook Current Edition; Alexander Publications
- Transformation for Live Line Workers Current Edition; Alexander Publications
- Live Line Work Practices Current Edition; Alexander Publications
- Underground Distribution Current Edition; Alexander Publications
- The Lineman's and Cableman's Handbook; Shoemaker and Mack, McGraw Hill
- Field Manual for Powerline Workers; Solman

Recommended Resources

• Distribution Transformer Handbook; Alexander Publications

Instructor Requirements

Occupation Qualification

The instructor must possess:

- Powerline Technician Red Seal certification
- Certifications and qualifications appropriate to the tools, equipment and systems involved in specific lessons or modules
- For specialized topics, an instructor who may not meet the criteria above will have equivalent levels of appropriate certification and experience

Work Experience

A minimum of 2 years of experience working in the industry as a journeyperson.

Instructional Experience and Education

It is preferred that the instructor also possesses one of the following:

- Provincial (BC) Instructor Diploma or completion of a similar Trainer Training / Instructional Methods program, plus
- Demonstrated effectiveness of communication skills, instructional and interpersona

Appendices

Appendix A: Glossary

Baker board	a fiberglass work platform
Bell	suspension or dead-end insulators
Bell wrench	wrench for tightening various square head bolts
Bonding	making a mechanically secure electrical connection between two or more objects to ensure they are at the same potential
Buck	to lower or attempt to lower the voltage
Buck arm	two sets of crossarms at 90 degree angles to each other.
Bucket truck	an aerial lift truck for raising workers high enough to work on lines from the insulated bucket of the truck
Bug	a transformer
Bull line	heavy line for pulling in wires
Bull wheel	a reel device used to hold tension on a transmission conductor during stringing operations
Bundle	multiple strings of conductor
Capacitor	device that improves power quality
Cascade lighting	method of switching street lights in the first circuit, which, upon being energized, activates a relay that, in turn, energizes the second; the second then energizes the third, and so on
Chicken wing	steel post insulator standoff
Cold	a de-energized line
Conductor	that part of a cable, overhead line or apparatus intended to conduct the flow of electrical energy
Counterpoise	method of bonding, either to ground or to each other
Cribbing	method of increasing pole stability in poor soil conditions
D.A. Bolt	double arming bolt
De-energized	disconnected from a source of electricity
Diaper pin	a clamp to hold rubber blankets
Digging bar	long, round steel bar with 2-in. chisel on one end
Distribution system	operating system which deliver energy from substation to customers and generally operates between 2400 volts to 34,500 volts
Diving board	a platform board (see also 'baker board')
Door	the fuse tube on open type cutouts
Elbow	underground cable terminator
Electrical apparatus	an appliance or device related to power systems
Energized	connected to a source of electricity
Fault indicators	
r uurt maioutoro	device which indicates a defect or abnormal condition on the system

plastic (FRP) tool	
Footing	concrete or grillage support for a structure; the base
Gin	temporary lifting device; also known as pole gin or transformer gin
Grillage	buried portion of a steel tower acting as a footing
Grounding	placing interconnected parts at ground/earth potential
Guy wires	high tensile steel wire attached to an anchor point which is installed to offset a conductor tension and equipment load
Half-power	partial/part power to a service
Hard line	steel bull line for pulling in wires
Headache	1) vocal warning of danger. 2) anything falling from above on pole.
High pot	to apply high potential to electrical machine or equipment, normally done during insulation testing.
Hood	insulator cover
Hooks	climbers, used for climbing poles
Hose	rubber or plastic cover up equipment (conductor cover)
Hot	a live or energized line
House knob	a wire holder (also known as an Emily knob)
Hydro-vacuum excavation	excavating with high-pressure water and a vacuum system
Isolated	physically disconnected or separated from all sources of dynamic energy
Jack straps	small (2-in.) blocks for pulling up small wire secondary
Johnny-ball	guy strain insulator
Jumper	a slack electrical connection between two points
Jumper holding stick	wire holding stick
Laminated poles	poles made of laminated wood
Lock-out and tag-out	procedure to prevent unauthorized operation of equipment
Maintenance programs	preventative or pro-active programs to ensure reliability of system
Meggering	to apply potential to test electrical equipment for continuity and insulation
Metering equipment	equipment used to track customer consumption of electricity for billing purposes
Network systems	connecting points of generation or supply sources
Nomenclature	powerlines and electrical apparatus designated by alphabetic and numeric codes
Nose bag	canvas tool pouch
Phase	one (single) conductor
Pig-tail	spiral disconnect or spiral link stick
Ping	deformation of threads to prevent nuts from loosening due to vibration

SKILLED TRADES^{BC}

Appendices

Potential	latent energy (potential presence of voltage)
Powder-actuated tools	tools that requires an explosive charge to operate
Pothead	the termination device used on end of an underground cable
Primary	voltage above 751 volts alternating current (distribution system)
Reactor	equipment that stabilizes over-voltage conditions
Riser pole	a transition pole going from overhead to underground distribution (also known as 'dip pole')
Secondary	voltage 750 volts alternating current, and below (distribution system)
Sectionalize	to isolate or separate sections of line
Sheaves	part of a rope block
Shot gun stick	a Grip-All stick
Skywire	a ground wire on top of poles and towers to protect the lines from lightning; also known as shield wire, static wire or overhead shield wire (OHSW)
Sleeve	a splice
Splicing	the joining of two conductors together end to end
Standards	local or utility-based structural designs
Structure	a device used to support conductors or cables and related equipment; for example, poles and towers
Switch stick	a disconnect stick
Tag line	rope used to tie off line or to control load being lifted
Thumper	underground fault locator
Tongs	usually refer to pole tongs, used for controlling pole when setting
Thru-bolt	a machine bolt
Spoon	a shovel; cup-shaped with long handle
Squeeze on	a compression fitting (connectors). Also known as a 'crimp-it'
Line guard	plastic protective cover
Switching	an operation that affects or modifies the status of a system
Transformer 'bank'	two or three transformers at same location connected to the same circuit
Transmission line	operating voltage over 35,000 volts
Transmission system	operating system with a voltage between 69,000 volts to 765,000 volts
Tree	pole mounted auxiliary arm used for lifting conductors
Weatherhead	the top of the conduit that contains the customer service conductors, constructed so it will resist the action of rain, sun, etc.

Appendix B: Acronyms

AAC	Aluminum Alloy Conductor
AR	Arc Rated (note: all AR clothing is flame resistant (FR), but not all FR clothing has been Arc Rated)
ACSR	Aluminum conductor steel reinforced
CCA	chromated copper arsenates (pole treatment material)
C.S.P.	completely self-protected transformer
C.T.	current transformer, a device used to transfer current from one value to another
FR	Flame Resistant (note: all AR clothing is flame resistant (FR), but not all FR clothing has been Arc Rated).
FRC	flame retardant clothing
FRP	fibreglass reinforced plastic (hotline sticks)
GIS	Geographical Information System
GPS	Global Positioning System
KVA	kilovolt ampere
LED	light emitting diode
OD	Overhead Distribution
O.C.B.	oil circuit breaker
OH&S	Occupational Health and Safety
P.C.B.	polychlorinated biphenyl chemical
PPE	personal protective equipment
P.T.O.	power take off
RBD	radial boom derricks
SF6	Sulphur hexafluoride gas
SWL	Safe working load
TDG	Transportation of Dangerous Goods
ULF	Ultra low frequency
URD	Underground Residential/Rural Distribution
UD	Underground Distribution
VLF	Very low frequency
WHMIS	Workplace Hazardous Materials Information System
WLL	working load limit